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Abstract 

Unplanned kidney dialysis is associated with higher morbidity and mortality rates among 

advanced chronic kidney disease patients. The incidence of unplanned dialysis can be 

attributed to myriad factors, but importantly, many of them are modifiable with 

appropriately timed intervention and treatment planning. A system tailored to the clinical 

question of the optimal dialysis preparation timeline could be crucial in mitigating the risk 

factors associated with initiating dialysis in an unplanned manner. Hereinafter, the 

development of clinical machine learning models for the prediction of kidney failure over 

short timeframes of 6 and 12 months is studied. The groundwork for the machine learning 

analysis is laid out, covering the characterization of The Ottawa Hospital’s Multi Care 

Kidney Clinic dataset, the data processing, and a comparison of machine learning to 

traditional methods. We find that a data-driven approach proffers an opportunity to 

significantly reduce the burden of unplanned dialysis in advanced CKD centers. 
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Chapter  1: Introduction 

1.1 Motivation 

Chronic Kidney Disease (CKD) has emerged as a significant global burden, with its 

prevalence continuing to escalate at an alarming rate [1, 2]. The evolving pervasiveness 

of CKD underscores the necessity for more efficient management strategies of CKD 

patients, both to safeguard the sustainability of healthcare systems and to promote patient 

health and happiness. One of the clinical management challenges faced both by patients 

and providers alike is the incidence of unplanned dialysis starts, a term that refers to 

dialysis initiation in the inpatient hospital setting. In general, unplanned dialysis starts are 

associated with unfavorable outcomes, such as increased mortality and morbidity [3], 

thereby further complicating the patient’s health status. The high incidence of unplanned 

dialysis (from 40-60% of all dialysis starts in this population [4, 5]) can be attributed to 

myriad factors [4-8]. Importantly, many of these risk factors are potentially modifiable, 

suggesting that the negative outcomes associated with unplanned dialysis starts could be 

mitigated through timely intervention. By addressing these modifiable risk factors, we 

could facilitate a more optimal transition to dialysis for CKD patients, thereby improving 

their prognosis and overall quality of life all while reducing the associated financial strain 

imposed on providers. 

 

1.2 Problem Statement 

The nature of this clinical challenge yields itself to predictive modeling, whereby a patient’s 

immediate or future risk of kidney failure is estimated using statistical algorithms. While 

there have been numerous kidney failure risk prediction models developed and 

implemented over time [9-12], the rate of unplanned dialysis starts remains persistently 
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high. These models may be decoupled from the problem for two reasons. Firstly, they 

predict over longer timeframes of 2-5 years, when dialysis preparation should preferably 

occur 6-9 months prior to dialysis initiation [13]. Second, they are single-timepoint models, 

derived for more general CKD populations with better kidney function and a much lower 

risk of kidney failure. We hypothesize that a model tailored to predict the need for dialysis 

in advanced CKD settings should be dynamic (i.e., accounting for evolving clinical 

measures) and should predict at routine time intervals, and thus compliment the manner 

and style of patient monitoring in specialized CKD clinics. Altogether, this suggests that 

what may be lacking in advanced CKD practice is a model that is concretely tied to the 

described clinical question: must the patient be prepared for dialysis now, or not. That is, 

will the patient’s kidneys fail in the next 6-9 months? 

 

1.3 Contributions 

This thesis contributes preliminary models and studies towards addressing the highlighted 

clinical question. The findings are presented herein and have been disseminated to the 

wider research community via one journal article and two conference presentations. 

Chronologically, they are: 

o Klamrowski, M., et al., POS-201 Machine Learning Prediction of Imminent 

Dialysis in Advanced CKD Patients. Kidney International Reports, 2022. 7(2): 

p. S86. 

 Presented as a poster at the World Congress of Nephrology in Kuala 

Lumpur (Virtual), and published as the conference abstract above, this 

study elicited the capabilities of a preliminary machine learning model 

for the prediction of kidney failure at timeframes at 3, 6, and 12 months. 

These analysis results were included as a component in a successful 
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CIHR Project Grant application (Artificial Intelligence for the Prevention 

of Unplanned Dialysis; 2022-2026; $195,000CAD; Pis, G. L. 

Hundemer, A. Akbari, C. R. McCudden, R. K. Klein, K. Thavorn). 

o Klamrowski, M., et al., Comparison of Machine Learning with Cox Regression 

Models for Kidney Failure Prediction among Patients with Advanced CKD. 

CCMG-CSCC, 2023. 

 Poster presentation at the Canadian Society of Clinical Chemists 67th 

Annual Meeting in Winnipeg, Manitoba. Abstract and poster were 

prepared by M. M. Klamrowski. Work was presented by C. R. 

McCudden. This study demonstrated the potential for improved 

predictive performance using machine learning over Cox regression 

models for the prediction of kidney failure at short timeframes of 6 and 

12 months. 

o Klamrowski, M., et al., Short Timeframe Prediction of Kidney Failure among 

Advanced CKD Patients. Clinical Chemistry, 2023.  

 Published in Clinical Chemistry. This journal article introduced new 

models for use in advanced CKD contexts for the prediction of kidney 

failure at short timeframes of 6 and 12 months. A comparison was 

performed across several predictive model types prominent in the 

kidney failure prediction literature and using different sets of laboratory 

measurements: baseline alone versus baseline and follow-up visit data. 

The manuscript is included as Chapter 4 of this thesis. 

 

1.4 Thesis Structure 

The outline for the chapters that follow is: 



4 

 

 

o Chapter 2 lays the contextual and technical foundation for the analyses and 

studies that follow. 

o Chapter 3 describes the dataset, curated in a cohort of advanced CKD patients 

at the Ottawa Hospital’s Multi-Care Kidney Clinic, on which all analyses were 

performed. 

o Chapter 4 is a manuscript entitled Short Timeframe Prediction of Kidney Failure 

among Advanced CKD Patients which studies the comparison of machine 

learning and Cox regression models. The manuscript has been published in 

Clinical Chemistry. 

o Chapter 5 is a second manuscript that aggregates all of the methodologies 

presented in Chapter 3 for the derivation and external validation of a machine 

learning model for the prediction of kidney failure among advanced CKD 

patients. The manuscript is currently in preparation for submission. 

o Chapter 6 is a discussion of the field, including challenges and opportunities 

for future work. Finally, it draws conclusions from the work described herein. 
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Chapter  2: Background 

This section outlines and details the requisite knowledge to understanding the main body 

of this work. Section 2.1 is subdivided into three main subsections – providing the reader 

with some basic information on clinical kidney science (Sections 2.1.1 – 2.1.4), the 

management of CKD populations (Section 2.1.5), and individualized care pathways for 

CKD patients (Section 2.1.6). By no means are these sections comprehensive, given the 

constantly developing nature of CKD science and practice. Therefore, for further 

information a consultation of relevant texts such as Chronic Renal Disease by Kimmel and 

Rosenberg (2020) [14] and up-to-date guidelines such as Kidney Disease: Improving 

Global Outcomes (KDIGO) [15], is encouraged. Section 2.2 presents the state-of-the-art 

methodology that is used in CKD progression prognostication using survival models and 

Cox regression. Section 2.3 lays the informational foundation for the machine learning 

methodology that was used to derive the predictive models being proposed for use in 

advanced CKD clinics at The Ottawa Hospital and beyond. 

 

2.1 Chronic Kidney Disease 

Chronic kidney disease (CKD) is a progressive condition characterized by the gradual loss 

of kidney function over time, potentially leading to a range of symptoms and health 

complications that can become life threatening. CKD poses a considerable burden on 

individuals, families, and healthcare systems due to the constraints imposed on patient 

quality of life, increased healthcare costs, and the risk of progression to end-stage kidney 

disease (ESKD) requiring dialysis or transplantation. 
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Chronic kidney disease (CKD) affects millions of people worldwide [1]. In many 

low- and middle-income countries, CKD remains underdiagnosed and undertreated [1, 

16]. In Canada, upwards of 4 million people have moderate, or advanced CKD progression 

[17, 18]. In the end stages of this disease, patients require life-saving kidney therapy 

through dialysis or kidney transplantation in order to sustain life. Many individuals with 

end-stage kidney disease (ESKD) experience a significant decline in their quality of life, 

as they must undergo costly and time-consuming treatments, all while being unable to 

work [17]. Alarmingly, the prevalence of CKD has been increasing over the past decades, 

driven in part by the rising prevalence of risk factors such as diabetes, hypertension, 

obesity, and an aging population [1, 2]. In Canada, the number of persons receiving life-

saving kidney therapy is also steadily increasing, representing a significant financial and 

economic burden [19]. 

Understanding the complex interplay of factors contributing to the development 

and progression of CKD is essential for effective prevention, early detection, and 

successful application of management strategies. Extensive research has been 

conducted to elucidate the pathophysiological mechanisms underlying CKD, including the 

involvement of genetic predisposition [20], inflammation [21-23], oxidative stress [24], and 

metabolic abnormalities in general [25, 26]. Moreover, the identification of novel 

biomarkers such as cystatin C [27-29] and the advent of advanced imaging techniques 

[30, 31] further demonstrates the developing nature of the field of CKD research. 

Despite these advancements, significant challenges persist. The heterogeneity 

and multifactorial nature of CKD etiology, and the interplay between genetic, 

environmental, and lifestyle factors make it a complex disease to manage. Moreover, the 

translation of research findings into clinical practice and the development of effective 
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interventions to halt disease progression or improve patient outcomes remain ongoing 

areas of investigation. 

 

2.1.1 The Kidneys 

The kidneys (illustrated in Figure 2-1) are organs in the urinary system of the human body, 

responsible for regulating the volume and chemical composition of fluids. Their primary 

role is to direct most water-soluble waste products, excess water, and toxins, from the 

blood into the urine which is eventually excreted from the body. Apart from filtration, the 

kidneys also help regulate electrolyte balance, blood pressure, and the production of red 

blood cells [32]. 

 

Figure 2-1: Principal illustration of the kidneys (A), and microstructures of the kidney seen on a cut surface 
(B). Duplicated from The Urinary System / University of the Highlands and Islands (CC0). 
 

The two most commonly obtained measures of kidney function are the glomerular 

filtration rate (GFR), and albuminuria (albumin level in the urine). GFR – discussed in 

slightly more depth in Section 2.1.2.1 – represents the rate at which blood is filtered by 

tiny blood vessels called glomeruli (singular: glomerulus). Each glomerulus inhabits a 

larger component called a nephron, which can be considered the functional unit of the 

whole kidney. Nephrons, generally speaking, are situated in the renal cortex and medulla 
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regions of the kidney (Figure 2-1). There are approximately one million nephrons in a 

healthy and functional kidney. As nephrons die, there are fewer functional glomeruli 

available to filter blood. As a result, the kidney’s filtration rate (GFR) – its fundamental 

measure of function – decreases. Once sufficiently many nephrons die, waste products 

may remain in the blood, leading to the onset of CKD and its associated symptoms. Kidney 

dysfunction is also assessed using the protein, albumin. Albumin should normally be 

retained in the bloodstream by the kidneys. When kidney damage occurs, the filtration 

system becomes compromised, allowing albumin to leak into the urine. The presence of 

albumin in urine, known as albuminuria, is an early and important sign of kidney damage. 

In summary, the kidneys play a crucial role in filtering waste and maintaining 

overall body function. When kidney function declines, measures such as GFR and urine 

albumin levels help assess the extent of damage. Substantial functional damage to the 

kidneys leads to CKD, and potentially kidney failure requiring dialysis or kidney 

transplantation (discussed in the sections to follow). 

 

2.1.2 Definitions 

Chronic kidney disease (CKD) is a clinical condition characterized by the progressive loss 

of kidney function over a period of months or years. The Kidney Disease: Improving Global 

Outcomes (KDIGO) defines CKD as albuminuria above 30 mg/g, an estimated glomerular 

filtration rate (eGFR; explained in Section 2.1.2.1) under 60 mL/min/1.73m², or both, for 

three months or more, regardless of the underlying etiology [33]. CKD is further 

subcategorized into five stages based on the severity of kidney dysfunction, with stage 1 

representing mild impairment and stage 5 indicating end-stage kidney disease (ESKD; 

explained in Section 2.1.2.2) requiring kidney replacement therapy. The complete KDIGO 
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classification system is depicted in Figure 2-2. The following sections describe in more 

detail the technical components that make up  Figure 2-2. 

 

Figure 2-2: KDIGO-specified stagewise classification of CKD. Green boxes denote low-risk prognosis of CKD; 
yellow denotes moderately increased risk; orange, high risk; red, very high risk. CKD is classified as persistent 
albuminuria ≥30 mg/g (A2) or eGFR <60 mL/min/1.73m² (G3), or both, for at least three months. Duplicated 
from the KDIGO Guidelines for Diabetes Management in Chronic Kidney Disease (CC0) [33]. 
 

2.1.2.1 Glomerular Filtration Rate (GFR) 

Glomerular filtration rate (GFR) refers to the rate at which the kidneys filter waste products 

and excess fluid from the bloodstream, down into the urinary bladder where it is then 

expelled from the body (Figure 2-1). As such, GFR is the key indicator by which we assess 

kidney health and performance, and why its range is a useful scale for delineating CKD 

into the clinically meaningful stages introduced at the start of Section 2.1.2. 

GFR is commonly expressed as milliliters per minute (mL/min) per 1.73 square 

meters (mL/min/1.73m²), where mL/min represents “flow rate”, and the latter (1.73m²) 
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represents a normalization to the average adult body surface area (BSA) [32, 34]. Given 

the function of the kidneys, this “flow rate” and its associated units are fairly intuitive and 

straight forward from a conceptual view. However, it may not be clear how this “flow rate” 

can be concretely measured in real kidneys. Clinically, “flow rate” is quantified with the aid 

of a physiological process called renal clearance. Renal clearance can be determined 

using plasma/serum samples, or a combination of urine and plasma/serum samples. 

Plasma and serum are two different components of blood that are available from a 

collected blood sample and separated out by centrifuging the sample. The choice between 

plasma and serum depends on the specific test being conducted and the requirements for 

the analysis. Renal clearance refers to the volume of plasma/serum from which a solute 

is cleared by the kidneys per unit of time [34]. More concretely, renal clearance is 

determined by comparing the rate at which a substance appears in the urine to its 

concentration in the blood plasma/serum. We may calculate the renal clearance of a 

plasma solute as 

𝑈𝑈𝑆𝑆 × 𝑉𝑉
𝑃𝑃𝑆𝑆

, 

where 𝑈𝑈𝑆𝑆 represents the urine concentration of the solute, 𝑉𝑉 is the urine flow rate (volume 

per time period), and 𝑃𝑃𝑆𝑆 is the plasma concentration of the solute [32]. The ideal plasma 

solutes on which this clearance could be measured are inulin, iohexol, 51Cr-EDTA, 99mTc-

DTPA or 125I-iothalamate [35].  

It is important to note that the testing processes for the aforementioned markers 

are laborious and expensive, and thus are not clinically practical for routine follow-up of 

the patient. An alternative to these that has garnered widespread adoption is 

plasma/serum creatinine, given how closely its behavior mimics inulin. While not perfect, 

it has become the most commonly used marker for estimating renal clearance, and GFR. 
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Numerous equations to estimate the relationship between creatinine markers in the blood 

and measured GFR have been developed and validated in large multi-center cohort 

studies. These equations enable the estimation of GFR from easy-to-collect laboratory 

samples such as plasma/serum creatinine. Such estimating equations released for 

widespread use include the Modification of Diet in Renal Disease (MDRD) equation or the 

Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation [36, 37]. Though 

new equations and studies are being implemented that do not include the use of a race 

modifier [27, 38].  

In summary, it is important to understand that it is from creatinine, a surrogate for 

measured GFR, that a patient’s kidney function is estimated, staged, and assessed. When 

GFR is estimated from creatinine, or similar surrogates, it is referred to as eGFR, where 

the “e” denotes “estimate”. Clinical kidney science is evolving, and practices around 

creatinine collection and use may change. For example, currently cystatin-C is garnering 

increased attention due to its superior accuracy to serum creatinine in biomarking GFR 

[27-29, 35, 39]. However, its widespread adoption remains to be seen due to much higher 

costs and limited availability of instruments that would enable its routine implementation. 

While the physiological processes and laboratory practices just described are not 

inherently important to the understanding of this thesis, the uncertainty they introduce 

places important constraints on the interpretations of the findings herein. This uncertainty 

results from multiple factors including variations in sample collection and laboratory 

methodology and biological variations experienced by the patient throughout the day or 

between days. 
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2.1.2.2 End-Stage Kidney Disease (ESKD) 

When the kidneys fail, they lose the ability to perform their vital functions adequately. This 

condition is known as end-stage kidney disease (ESKD) or kidney failure. As kidney 

function declines, waste products and toxins accumulate in the body, leading to symptoms 

such as fatigue, fluid retention, electrolyte imbalances, and high blood pressure. ESKD 

represents the final stage of CKD when the kidneys' functional capacity is severely 

compromised. At this stage, kidney replacement therapy, such as dialysis or kidney 

transplantation is required to sustain the patient’s life. ESKD is associated with a higher 

risk of morbidity and mortality and requires ongoing medical management and support. 

Clinically, ESKD is classified based upon the patient’s GFR (Figure 2-2): once a patient’s 

GFR decreases to 15 mL/min/1.73m² or less, the patient is considered to have ESKD. 

2.1.2.3 Dialysis and Transplantation 

Two main modalities of dialysis exist: hemodialysis and peritoneal dialysis. Hemodialysis 

involves the extracorporeal removal of waste products and excess fluid through an artificial 

kidney (dialyzer) machine. It requires the pre-empted surgical creation of an access port 

to the blood called a fistula. In contrast, peritoneal dialysis uses the peritoneal membrane 

as a natural filter, where a dialysate fluid is introduced into the abdominal cavity, where 

the removal of waste occurs over several hours (e.g., during sleep), and then the fluid is 

removed. The choice of dialysis depends on various factors, including patient preference, 

clinical status, comorbidities, and the availability of resources.  

Kidney transplantation, on the other hand, involves the surgical placement of a 

healthy donor kidney into a recipient with ESKD, offering the potential for improved quality 

of life and long-term survival. Kidney transplantation is considered the best treatment 

option for eligible CKD patients with ESKD. A successful kidney transplant offers the 



13 

 

 

potential for improved survival, better quality of life, and freedom from dialysis 

dependence. However, transplantation requires careful evaluation, immunosuppressive 

medications, and lifelong monitoring to prevent organ rejection, and is dependent on 

finding a suitable and willing donor. 

 

2.1.3 Risk Factors 

CKD development and progression are influenced by a range of risk factors, both 

modifiable and non-modifiable. Modifiable risk factors include diabetes mellitus, 

hypertension, obesity, smoking, sedentary lifestyle, excessive alcohol consumption, and 

certain medications. Non-modifiable risk factors encompass age, ethnicity (e.g., African 

descent), and certain genetic predispositions [40]. 

 

2.1.4 Biomarkers 

Biomarkers play a crucial role in diagnosing and monitoring CKD. These measurable 

indicators in blood, urine, or other biological samples reflect the presence, severity, and 

progression of the disease. Examples of biomarkers used in CKD include serum 

creatinine, eGFR, albuminuria, cystatin-C, and various inflammatory and fibrotic markers. 

Table 2-1 below lists the most common laboratory measurements utilized in the clinical 

management of CKD patients and what they are biomarkers for. 

 

2.1.5 Management 

Effective management of CKD aims to slow down the progression of kidney dysfunction, 

manage complications, and improve patient quality of life. The management strategies 
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encompass lifestyle modifications, pharmacological interventions, and, in the end stages 

of CKD, kidney replacement therapy. 

Lifestyle modifications play a vital role in the management of CKD, particularly in 

the early stages. These include dietary adjustments, regular physical activity, smoking 

cessation, and weight management. Dietary recommendations often involve limiting 

sodium and phosphorus intake [41], moderating protein consumption, controlling fluid 

intake, and promoting a balanced diet rich in fruits, vegetables, and whole grains [42]. 

Additionally, patients may be advised to reduce the intake of potentially nephrotoxic 

substances, such as nonsteroidal anti-inflammatory drugs (NSAIDs) and certain herbal 

supplements [33, 43]. 

Table 2-1: Commonly collected laboratory measurements and the reasons for collection [14]. 

Laboratory Measurement Biomarker High Prevalence in 
Dataset (Yes/No) 

Creatinine Kidney Function Yes 

Blood Urea Nitrogen (BUN) Kidney Function Yes 

Estimated Glomerular Filtration 
Rate (eGFR) 

Kidney Function Yes 

Albumin Nutritional Status Yes 

Hemoglobin Anemia Yes 

Potassium Electrolyte Balance Yes 

Phosphorus Bone Health Yes 

Calcium Bone Health Yes 

Parathyroid Hormone (PTH) Bone Health Yes 

Sodium Electrolyte Balance No 

Bicarbonate Acid-Base Balance Yes 

Magnesium Electrolyte Balance No 

Uric Acid Kidney Function, Gout No 

Urine Protein Kidney Damage, Proteinuria Yes 

Urine Albumin Kidney Damage, Proteinuria Yes 

Urine Creatinine Kidney Function, Proteinuria Yes 

Urine Red Blood Cells Kidney Damage, Hematuria No 

Urine White Blood Cells Kidney Infection, Inflammation No 
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Regular physical activity has shown benefits in improving cardiovascular health, 

blood pressure control, insulin sensitivity, and overall well-being in CKD patients. 

However, exercise programs should be tailored to individual capabilities and may require 

adjustments based on the stage of CKD and presence of other comorbidities. 

Pharmacological interventions are commonly employed to manage various 

aspects of CKD. Medications are prescribed based on the specific needs and 

comorbidities of individual patients. Some commonly used medications include: 

o Angiotensin-converting enzyme inhibitors (ACE inhibitors) and angiotensin II 

receptor blockers (ARBs): These drugs are often prescribed to control 

hypertension and reduce proteinuria, thus slowing down the progression of 

CKD. 

o Diuretics: Diuretics help manage fluid overload and edema, particularly in 

patients with CKD-related volume expansion. 

o Phosphate binders: CKD patients often experience hyperphosphatemia, which 

can be managed with phosphate binders to reduce the risk of cardiovascular 

complications and mineral bone disorders. 

o Erythropoiesis-stimulating agents (ESAs): ESAs stimulate red blood cell 

production and are used to manage anemia associated with CKD. 

o Statins: Statin medications are prescribed to control dyslipidemia (unhealthy 

levels fats in the blood) and reduce the risk of cardiovascular events in CKD 

patients. 
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2.1.6 The Advanced CKD Clinic 

In recent years, the establishment of specialized advanced chronic kidney disease (CKD) 

clinics has emerged as a valuable approach to optimize the management and care of 

patients with advanced stages of CKD. These clinics serve as dedicated centers where 

patients with CKD, particularly those approaching or already in ESKD, receive 

comprehensive and coordinated care. By providing specialized care, close monitoring, 

individualized treatment plans, patient education, coordination of renal replacement 

therapy, psychosocial support, and a commitment to research and innovation, the 

advanced CKD clinic plays a pivotal role in improving the outcomes and quality of life for 

patients with advanced stages of CKD. These clinics serve as a crucial link between 

primary care providers and nephrology specialists, promoting integrated and patient-

centered care throughout the CKD journey. 

2.1.6.1 Multidisciplinary Care Team 

The management of CKD patients is a multidisciplinary effort involving nephrologists, 

dietitians, pharmacists, nurses, and other healthcare professionals. This collaborative 

approach ensures that patients receive holistic care that addresses the various aspects of 

their condition. The team members bring their expertise to bear on the diverse needs of 

CKD patients, including medical management, nutritional guidance, psychosocial support, 

and education about kidney replacement therapy options. 

2.1.6.2 Disease Progression Monitoring 

One of the primary roles of the advanced CKD clinic is to closely monitor disease 

progression in CKD patients. Regular monitoring of kidney function, blood pressure, 

electrolytes, and other relevant parameters is essential to guide treatment decisions and 

optimize patient outcomes. Through regular assessments of kidney function, such as 
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eGFR and proteinuria, the clinic can evaluate the rate of decline in kidney function and 

determine the appropriate timing for interventions or discussions regarding kidney 

replacement therapy. This proactive monitoring ideally allows for timely decision-making 

and planning, ensuring that patients are prepared for the transition to dialysis or kidney 

transplantation when necessary. 

2.1.6.3 Patient Education 

Education plays a pivotal role in the advanced CKD clinic, empowering patients to actively 

participate in their own care. The clinic provides comprehensive education on CKD, its 

progression, treatment options, and self-management strategies. Patients and their 

families are educated about the importance of adhering to medications, dietary 

restrictions, and fluid management. They are also informed about the potential 

complications of CKD and how to recognize and manage them. By empowering patients 

with knowledge, the clinic aims to enhance patient engagement, improve treatment 

adherence, and ultimately achieve better clinical outcomes [7, 44]. 

2.1.6.4 Psychosocial Support 

CKD is associated with significant psychosocial challenges, including emotional distress, 

anxiety, depression, and financial burdens. The advanced CKD clinic recognizes the 

importance of addressing these aspects of patient care. Social workers and psychologists 

within the clinic provide counseling, emotional support, and assistance in navigating the 

financial aspects of CKD management. They also facilitate connections with support 

groups and community resources, which can offer additional support and a sense of 

belonging for patients and their families. 



18 

 

 

2.1.6.5 Individualized Treatment Plans 

The advanced CKD clinic recognizes that CKD management requires an individualized 

approach, tailored to each patient's unique circumstances. The care team conducts 

comprehensive assessments, taking into account factors such as age, comorbidities, 

lifestyle, and personal preferences. Based on these assessments, personalized treatment 

plans are developed to optimize the management of CKD, including strategies for blood 

pressure control, glycemic control in diabetic patients, management of mineral and bone 

disorders, and prevention of cardiovascular complications [14].  

It is common for patients in the advanced CKD clinic to forego kidney replacement 

therapy entirely, ultimately as a matter of personal choice. Such patients typically opt for 

conservative care management, where the goal is to maximize patient well-being without 

dialysis or kidney transplantation.  

The clinic also provides guidance on lifestyle modifications, including dietary 

recommendations and physical activity, to support overall well-being and slow the 

progression of CKD. 

2.1.6.6 Coordination of Kidney Replacement Therapy 

For patients approaching the need for kidney replacement therapy, the advanced CKD 

clinic plays a crucial role in facilitating a smooth transition. The care team provides 

information about different modalities of dialysis (hemodialysis and peritoneal dialysis) and 

kidney transplantation, including their benefits, risks, and implications for lifestyle. They 

guide patients through the process of selecting the most suitable kidney replacement 

therapy option based on individual preferences, medical suitability, and availability of 

resources. The clinic also assists patients in accessing appropriate resources, such as 

referral to transplant centers or facilitating access to dialysis centers. 
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2.1.6.7 Outcomes 

In practice, the type and incidence of possible patient outcomes varies from clinic to clinic 

and may be dependent on the admission criteria for the clinic as well as the availability of 

treatment resources. In The Ottawa Hospital’s Multi-Care Kidney Clinic, the termination of 

a patient’s follow-up typically coincides with either 1) dialysis initiation, 2) death from 

comorbidities, kidney failure, or other causes, or 3) dropout from the clinic and thus future 

observation. The analyses in this thesis include all such patients with these outcomes.  

The initiation of dialysis may be subdivided based upon the treatment modality, 

and the setting in which dialysis was initiated. In this thesis, the focus is on unplanned 

dialysis starts which are associated with greater risk of unfavorable outcomes such as 

morbidity or subsequent death. Such patients are typically those beginning dialysis in an 

emergent manner that requires hospitalization and immediate and frequently unprepared 

dialysis treatment. This definition is the most complete definition of unplanned dialysis and 

is the one used throughout the thesis [5, 6]. I.e., those patients beginning dialysis in the 

inpatient setting, as opposed to the outpatient setting.  

Unplanned dialysis represents a major burden on overall patient quality of life, as 

well as a major economic burden on healthcare providers. Patients typically have the 

option of either peritoneal dialysis or hemodialysis. Both options will significantly impact 

the patient’s quality of life, but there are several tangible differences between these two 

modalities. Peritoneal dialysis can be considered preferable, as a less-imposing, safer, 

and cheaper alternative to hemodialysis [5, 6]. But unplanned dialysis patients are less 

likely to have undergone modality education or have had a peritoneal dialysis access port 

created, and usually initiate in-center hemodialysis. It follows that timely education and 

access creation in patients at risk would lead to less morbidity and mortality and lower 

hospital costs [5].  
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It should be noted that within a single clinic there is no single and precise definition 

for when a patient should be dialyzed because clinicians use a combination of symptoms 

and clinical data to drive these outcomes. In the context of predictive modeling, this 

represents a limitation because outcomes that cannot be concretely defined will be subject 

to bias and variability.  

 

2.1.7 The Kidney Failure Risk Equation 

A call-to-action to develop kidney disease progression risk scores, aided by an influx in 

rich data streams, has since dawned an era of rapid development and validation of 

predictive models for use in the clinical management of CKD patients [10-12, 39, 45-48]. 

In 2011, the Kidney Failure Risk Equation (KFRE) was developed [10], and soon after in 

2016, it was validated internationally [49]. Since then, the KFRE has become the gold 

standard in predicting the risk of kidney failure at 2- and 5-year time horizons. The KFRE 

incorporates age, sex, eGFR, and urine albumin-to-creatinine ratio (uACR) to determine 

the longitudinal probability of kidney failure, making it easy to use in standard clinical 

practice. The rationale behind using KFRE lies in its ability to provide accurate risk 

estimation thereby facilitating appropriate interventions and treatment decisions. To this 

end, the KFRE has demonstrated excellent retrospective performance in diverse patient 

populations [9]. Clinical trials are currently underway to prospectively evaluate this model 

[50].  

 

2.2 Survival Analysis 

The study of patient CKD progression and risk factors frequently yields itself to survival 

analysis methodologies. Survival analysis is a traditional first choice for researchers 

interested in characterizing the time-to-event of an outcome (survival time) and the factors 



21 

 

 

that could be influencing different survival times among individual patients or groups. 

Survival analysis encompasses a vast toolbox of specialized statistical methods frequently 

leveraged by researchers in clinical trials, medical research, epidemiology, and social 

sciences. The following sections provide a primer on the survival analysis methodologies 

leveraged throughout this thesis. It is important to note that the theory that is elicited in the 

following sections is significantly tailored for relevance to the methods used in this thesis. 

The intricacies of survival and event history analysis, and even more broadly, counting 

processes, amalgamate into what is an expansive field of mathematical and statistical 

methods that are beyond the scope of this thesis. Most of the discussion centers around 

the Cox regression model. And so, discussions around the estimation and interpretation 

of hazard, for example, are strictly discussions of continuous-time hazard which may not 

generalize to a discrete-time case. 

 

2.2.1 Survival Data 

The key components of survival data are events and event times, obtained from the study 

of a multitude of individuals or observation instances. Survival datasets in medical 

research are often obtained from a cohort of individuals who are followed over time to 

track the occurrence of an event of interest. In the context of monitoring and managing 

advanced CKD patients, one instance in the survival dataset is represented by one patient. 

The event and associated event time for that patient would be an encoding of the patient’s 

disease progression timeline. An illustrated example of this concept is presented in Figure 

2-3.  
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Figure 2-3: Abstract representation of an advanced CKD patient’s timeline whilst under clinical management. 
Time zero is defined as the start of dialysis and during the months leading up to this event the patient had 
several visits to the CKD clinic (green boxes). The first visit to the CKD clinic is referred to as the initial visit 
and subsequent visits are referred to as follow-up visits. 
 

In survival data, it is commonplace to have incomplete information on one or more 

individuals. Individual survival times are only definable insofar as the event time has been 

observed. When an event time is unknown, in that the event is assumed or known to have 

occurred but it is not known when, the observation is said to be censored. Censoring can 

occur for various reasons. For example, in advanced CKD studies, the most frequent 

reasons for the existence of censored patient data are 1) loss to follow-up, 2) the patient 

had not yet experienced the event, and 3) a competing event occurred before the event 

of interest. 

It is important to distinguish between the different types of censoring [51]: 

o Right Censoring: This is the most common type of censoring in most 

research studies and is the only type of censoring handled in this thesis. 

Right censoring occurs when an event has not yet occurred for an 

individual at the end of the study / data collection window. 

o Left Censoring: Less common, this occurs when the exact event time is 

unknown, but it is known to have occurred before a certain time point. A 

common example of left censoring is when the event is assumed to have 

occurred before the start of the data collection window. 
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o Interval Censoring: Also less common, this occurs when the event is known 

to have occurred within a certain time interval. 

To summarize, Figure 2-4, panels A and B visually present real survival data from 

the Ottawa Hospital’s Multi-Care Kidney Clinic. Timelines for 10 patients split among each 

of the defined outcome groups are illustrated from their time of entry into the clinic until 

the end of their observed timeline. Figure 2-4A depicts the nature of the clinical survival 

data being dealt with here, whereby many patients were followed asynchronously over 

several years, with each timeline ending upon the observation of one or another outcome. 

Most survival data will traditionally be presented as seen in Figure 2-4B. Figure 2-4B 

demonstrates how most patient timelines typically follow the same pattern and differ only 

in their survival times and culminating events. 

In advanced CKD, the event of interest is generally kidney failure, defined as the 

initiation of dialysis in an urgent, unplanned setting (UD) or had kidney replacement 

therapy (i.e., kidney transplantation or dialysis) in a planned setting (PD), in Figure 2-4). 

If the event of interest is not observed, it is said to be right-censored for that patient. The 

determination of what constitutes censoring is an important decision. This is especially 

true in medical research and advanced CKD given the high incidence of competing events 

(e.g., death), but holds true for any survival analysis study. 

In closing, all of these data characteristics together constitute survival data and are 

most traditionally handled using survival analysis methods. With the methodology 

introduced in the following Sections 2.2.2 and 2.2.3, we can summarize survival data, 

model it, and use those artifacts to predict over future data. 
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Figure 2-4: Illustration of patient survival data, with (A) each timeline distributed throughout the entire study 
period, and (B), each timeline’s start left-aligned with 0 (i.e., time since entering the CKD clinic). A patient 
either died in pre-dialysis (Death), began dialysis in an urgent manner (UD), began dialysis in a planned 
manner (PD), or none of the above (No Event). The span of a patient’s timeline is given by a black line. Points 
at which the patient was observed, and covariates recorded (follow-up visits) are marked in green. 
 

2.2.2 Summarizing Survival Data 

The analysis of time-to-event outcomes in survival data requires effective summarization 

techniques to capture underlying patterns and characteristics. This subsection focuses on 

the essential methods used to summarize survival data, estimate event times, and assess 

survival probabilities. In summarizing survival data, there are three functions of central 

interest. They are the survivor function, the hazard function, and the cumulative hazard 

function. 
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2.2.2.1 Survivor Function 

The survivor function is a fundamental quantity in survival analysis and is estimated using 

nonparametric techniques. The survivor function, denoted generally by 𝑆𝑆(𝑡𝑡), provides the 

probability of survival beyond time 𝑡𝑡. Alternatively, it represents the probability of not 

experiencing the event of interest up to time 𝑡𝑡. This may be expressed as 

𝑆𝑆�𝑡𝑡𝑗𝑗� = P�𝑇𝑇 ≥ 𝑡𝑡𝑗𝑗� (1) 

Where an individual’s survival time can take any non-negative value 𝑇𝑇. Thus, P�𝑇𝑇 ≥ 𝑡𝑡𝑗𝑗� 

is the cumulative probability of an event occurring beyond or at 𝑡𝑡𝑗𝑗. The subscript j indicates 

an index associated with a discrete time interval. Conversely, the failure time may be 

expressed as 

𝐹𝐹�𝑡𝑡𝑗𝑗� = P�𝑇𝑇 < 𝑡𝑡𝑗𝑗� (2) 

𝑇𝑇 is thus said to have a probability distribution with an underlying probability density 

function 𝑓𝑓(𝑡𝑡). 𝑓𝑓(𝑡𝑡) represents the density of probability at 𝑡𝑡 and so can be integrated over 

to obtain the probability of survival (or failure) beyond (or before) a given time [51]. The 

probability of survival passed time 𝑡𝑡𝑗𝑗 can therefore be expressed as 

𝑆𝑆�𝑡𝑡𝑗𝑗� = P�𝑇𝑇 ≥ 𝑡𝑡𝑗𝑗� = 1 − 𝐹𝐹�𝑡𝑡𝑗𝑗� = 1 −� 𝑓𝑓(𝑢𝑢)d𝑢𝑢
𝑡𝑡𝑗𝑗

0
 (3) 

The survivor function ranges from 0 to 1 and is a non-increasing function over time. In 

other words, 𝑆𝑆(𝑡𝑡) decreases as 𝑡𝑡 increases. It can be estimated using methods such as 

life tables, which are simply a summary of the survival times as demonstrated in Figure 

2-4B, and the Kaplan-Meier estimator [52]. 
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2.2.2.2 Hazard Function 

Hazard is a quantity used to represent event occurrence. It represents the rate of the 

conditional probability of event occurrence. That is, the conditional probability of event 

occurrence per unit of time, which is a powerful and useful statistical measure given its 

specific and interpretable real-world meaning. Informally, the hazard function may be 

expressed as 

ℎ�𝑡𝑡𝑗𝑗� = lim
∆𝑡𝑡→0

�
P�𝑡𝑡𝑗𝑗 ≤ 𝑇𝑇 < 𝑡𝑡𝑗𝑗 + ∆𝑡𝑡 | 𝑇𝑇 ≥ 𝑡𝑡𝑗𝑗�

∆𝑡𝑡
�  (4) 

where for any 𝑡𝑡𝑗𝑗, we are interested in the probability per unit time that the survival time 

falls within [𝑡𝑡𝑗𝑗, 𝑡𝑡𝑗𝑗 + ∆𝑡𝑡). In this case, the hazard function is expressing the expected 

number of events in a given time period (i.e., the expected event rate) [52]. The hazard 

function is a non-negative function and can vary over time. The hazard function defines 

the distribution of 𝑡𝑡, thereby determining both the density and survivor functions [53]. The 

hazard function can be estimated from a constructed grouped life table [52]. See Section 

2.2.5.1 for details on how the hazard function can be estimated using a Cox regression 

model.. 

2.2.2.3 Cumulative Hazard Function 

The cumulative hazard function, denoted by 𝐻𝐻(𝑡𝑡), provides the cumulative risk of 

experiencing the event up to time 𝑡𝑡. It is the integral of the hazard function from time 0 to 

𝑡𝑡 (Equation 5). The cumulative hazard function is a non-decreasing function and can be 

estimated based on the estimated hazard function, specifically, 

𝐻𝐻�𝑡𝑡𝑗𝑗� = � ℎ(𝑢𝑢)𝑑𝑑𝑑𝑑
𝑡𝑡𝑗𝑗

0
(5) 
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 Equation 5 above specifies a formal relationship between the hazard function and 

the cumulative hazard function. This is important because survival modeling (as will be 

discussed in Section 2.2.5) must often begin with the estimation of the hazard function. 

Then, as mentioned, the cumulative hazard function can be obtained using Equation 5. 

With 𝐻𝐻�𝑡𝑡𝑗𝑗� in hand, the survivor function can be obtained (calculus omitted [52]) from the 

following relation: 

𝐻𝐻�𝑡𝑡𝑗𝑗� = − ln 𝑆𝑆�𝑡𝑡𝑗𝑗� = −ln�1 −� 𝑓𝑓(𝑢𝑢)d𝑢𝑢
𝑡𝑡𝑗𝑗

0
� (6) 

2.2.3 Kaplan Meier Estimator 

As previously mentioned, the Kaplan-Meier estimator provides a non-parametric method 

by which to estimate the survivor function of some survival data. It is given by [51] 

𝑆̂𝑆(𝑡𝑡) = �
𝑛𝑛𝑗𝑗 − 𝑒𝑒𝑗𝑗
𝑛𝑛𝑗𝑗

𝑘𝑘

𝑗𝑗=1

 , (7) 

where 𝑛𝑛𝑗𝑗 is the number of individuals that have survived up to time 𝑡𝑡𝑗𝑗, and 𝑒𝑒𝑗𝑗 denotes the 

number of individuals experiencing the event in the 𝑗𝑗-th time interval. With the Kaplan-

Meier estimator, each time interval is constructed such that a single event occurs at the 

start of the interval. Figure 6A illustrates the Kaplan-Meier estimate of the survivor 

function for the patient sample from Section 2.2.1 and Figure 2-4B, where time 

zero represents the initial visit to the CKD clinic. 
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2.2.4 Comparing Survival Groups 

2.2.4.1 Log-Rank Test 

It is often of interest to compare survival experiences among different groups, such as 

treatment groups or patient subgroups. The log-rank test is a widely used statistical test 

for comparing survivor functions between two or more groups. It assesses whether the 

observed differences in survival curves are statistically significant. The log-rank test takes 

into account the observed event times and censoring information and compares the 

cumulative number of events in each group over time. To illustrate, consider the patient 

sample from Section 2.2.1 and the associated Kaplan Meier estimate of the survivor 

function from the whole group (Figure 2-5A, B). In Figure 2-5B, the curve for the elevated 

creatinine group is consistently below (until 42 months) the curve for the reduced 

creatinine group, suggesting better survival outcomes for the reduced creatinine group. 

The log-rank test may be applied here to determine whether the observed difference in 

survival between the two groups is statistically significant. We obtain a p-value of 0.32, 

meaning the null hypothesis that the survival distributions are identical should not be 

rejected. While the provided example is likely to have been heavily influenced by sample 

size, it clearly illustrates the concept of survival differences among groups. Details of the 

log-rank test are not included here, for brevity. It suffices to understand that log-rank is a 

statistical test for comparing survival between different groups. To this end, log-rank will 

reappear in Section 2.3 as the fundamental optimization criterion in random survival 

forests. 

2.2.4.2 Hazard Ratio 

The hazard ratio can be used to represent the ratio of the hazards between two 

comparison groups. While the log-rank assesses the statistical significance between 
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groups, the hazard ratio quantifies the extent of the observed difference between groups. 

For example, the hazard ratio between a group 𝑎𝑎 and a group 𝑏𝑏 is 

HR =
ℎ𝑎𝑎(𝑡𝑡)
ℎ𝑏𝑏(𝑡𝑡)

 . (8) 

A hazard ratio greater than one indicates that group 𝑎𝑎 is the higher-risk group, whereas a 

hazard ratio less than one indicates group 𝑏𝑏 is the higher-risk group. Hazard ratios are 

used to make formal statements about risk among different comparison groups. The idea 

behind the hazard ratio (i.e., of relative risk between groups) also underpins the Cox 

regression model – to be discussed in the coming sections.  

 

Figure 2-5: Kaplan Meier estimates of the survivor function for the patient sample introduced in Section 2.2.1. 
In (A), the survivor function for the entire group is estimated, and the event times are annotated. In (B), the 
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group is stratified into two subgroups based upon their initial creatinine measurement. Log-rank test p-value: 
0.32. 
 

2.2.5 Modeling Survival Data (Cox Regression) 

While the aforementioned descriptors, when estimated, technically serve as descriptive 

models of survival data, they are limited. In survival analysis, it is frequently of interest to 

perform covariate-level analysis. I.e., how do unit changes in covariate values influence 

hazard and survival? The link and applicability to CKD is immediately evident, in that 

routinely collected clinical markers available from monitoring of CKD patients invite such 

analysis [6, 22, 54, 55]. For example, if a patient’s hypertension is controlled, what impact 

may it have on survival? Covariate, variable, feature, and predictor are all terms that may 

be used interchangeably when referring to the input variables of a model. Herein, covariate 

is used. 

This thesis focuses on only one of these models due to its widespread adoption in basic 

as well as clinical CKD science [9, 39, 49]: the Cox regression model (and an extension 

of the Cox regression model using time-varying covariates). Cox regression centers 

around the exploration of whether variations in covariates systematically influence event 

occurrence. Concretely, the Cox regression model stipulates that transformations in 

hazard scale linearly with covariates. This takes the form of a multiple linear regression: 

𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + ⋯+ 𝛽𝛽𝑝𝑝𝑥𝑥𝑝𝑝 (9) 

where 𝛽𝛽0 through 𝛽𝛽𝑝𝑝 represent coefficients assigned to each of the 𝑝𝑝 independent 

covariates given by 𝒙𝒙. The linear component 𝑌𝑌 encodes this transformation in hazard 

using the concept of a hazard ratio. Here, the hazard ratio is expressing the hazard of an 

individual, 𝑖𝑖, relative to some reference, or baseline group (see below). To improve 
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distributional behavior, the hazard ratio is expressed on a log scale [52], yielding the final 

formulation  

log �
ℎ(𝑡𝑡𝑖𝑖𝑖𝑖)
ℎ0(𝑡𝑡𝑗𝑗)

� = 𝛽𝛽1𝑥𝑥1𝑖𝑖 + 𝛽𝛽2𝑥𝑥2𝑖𝑖 + ⋯+ 𝛽𝛽𝑝𝑝𝑥𝑥𝑝𝑝𝑝𝑝  . (10) 

Note the constant term, 𝛽𝛽0, is absorbed by the baseline hazard, ℎ0(𝑡𝑡𝑗𝑗), which is discussed 

in the following passages [51]. 

Crucial to the Cox model is the definition of the reference/baseline group. I.e., 

ℎ0(𝑡𝑡𝑗𝑗) in Equation 10. The Cox model takes the hazard for this baseline group/individual 

to be an individual with all-zero covariates. Therefore, 
ℎ(𝑡𝑡𝑖𝑖𝑖𝑖)
ℎ0(𝑡𝑡𝑗𝑗)

 quantifies the hazard 

experienced by an individual, 𝑖𝑖, as characterized by that individual’s covariate values, 𝑿𝑿𝒊𝒊, 

relative to an individual with all-zero covariates. Equation 10 is then easily transformed 

into the familiar Cox model expression of hazard, 

ℎ�𝑡𝑡𝑖𝑖𝑖𝑖� = ℎ0�𝑡𝑡𝑗𝑗�𝑒𝑒𝛽𝛽1𝑋𝑋1𝑖𝑖𝑖𝑖+⋯+𝛽𝛽𝑝𝑝𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝  , (11) 

or in terms of cumulative hazard, 

𝐻𝐻�𝑡𝑡𝑖𝑖𝑖𝑖� = 𝐻𝐻0�𝑡𝑡𝑗𝑗�𝑒𝑒𝛽𝛽1𝑋𝑋1𝑖𝑖𝑖𝑖+⋯+𝛽𝛽𝑝𝑝𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝  . (12) 

 Through the coefficient estimates, Cox models directly quantify changes in hazard 

per unit increase in covariate values. Given Equation 11, it can be seen that each 𝛽𝛽 

coefficient is in fact a logarithm of the hazard ratio (HR). As such, the Cox model’s 

coefficients individually provide a direct measure of the relative risk being induced by that 

specific covariate. Together, they provide the overall relative risk of that individual’s 

covariate set, or that individual’s overall risk score. 

 Hazard ratios are reported in Chapter 4 of this thesis for a number of laboratory 

measurements. The interpretation of a hazard ratio associated with a particular covariate 

in a fitted Cox model is straightforward. For example, if we have an estimated baseline 
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hazard of kidney failure of 0.04, and an individual’s predicted or estimated hazard is 0.03, 

we say that the HR for the individual (individual vs. baseline) is HR = 0.03/0.04 = 0.75. 

With this result, and under the assumptions of a Cox model, we would make statements 

such as [56]: 

o The individual has a 100% - 75% = 25% lower risk of kidney failure. 

o The individual will have a (100% / 75%) – 100% = 33% increase in time 

before kidney failure. 

o A group of many such individuals would experience the event at 0.75 times, 

or 75% the rate of the baseline group. 

Despite their intended purpose, Cox models have garnered widespread usage as 

prediction models. In various disciplines of medical research, Cox models are used to 

longitudinally prognosticate the risk of an event occurring. In fact, the gold standard kidney 

failure risk prediction model is the KFRE, which is a Cox regression model. While the Cox 

regression model does not inherently provide an estimate of the baseline survivor function 

or the baseline cumulative hazard function, the recovery of these functions is possible 

using the estimated 𝛽𝛽s. Specifically, the obtained 𝛽𝛽s allow for an approximate estimate of 

the baseline cumulative hazard and baseline survivor function using the methods 

described in Section 2.2.5.1, and predicted survivor curves can then be obtained as 

𝑆̃𝑆�𝑡𝑡𝑗𝑗� = 𝑆̃𝑆0�𝑡𝑡𝑗𝑗�
𝑟𝑟𝑖𝑖  , (13) 

where 𝑟𝑟𝑖𝑖 is the individual’s overall risk score (𝑒𝑒𝛽𝛽1𝑥𝑥1𝑖𝑖𝑖𝑖+⋯+𝛽𝛽𝑝𝑝𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝) [51]. An individual’s 

predicted survivor curve represents a longitudinal continuous-time estimation of survival 

probability for that individual based upon the individual’s covariate values. It is from this 

predicted survivor curve that models such as the KFRE produce predicted risk scores at 

the desired timeframe.  
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2.2.5.1 Estimating the Cox Model 

Up to this point, methods for estimating the hazard function have only been alluded to. At 

a high-level, obtaining the fitted Cox model involves obtaining the coefficient estimates (𝛽𝛽) 

through partial maximum likelihood estimation. From the coefficient estimates, the Breslow 

approximate estimate of the baseline cumulative hazard and baseline survivor function 

can be obtained [52]. With these quantities in hand the Cox model is specified, as per 

Equation 11, and estimates of survival can be computed using the equations in sections 

prior. 

 Obtaining the 𝛽𝛽s involves using the method of maximum partial likelihood. I.e., the 

betas are selected to be those that maximize the partial likelihood function, given by  

𝐿𝐿(𝛽𝛽) = ��
𝑟𝑟𝑖𝑖

∑ 𝑟𝑟𝑙𝑙𝑙𝑙∈𝑅𝑅(𝑡𝑡𝑖𝑖)
�
𝛿𝛿𝑖𝑖𝑛𝑛

𝑖𝑖=1

 . (14) 

Note that for computational efficiency, the logarithm of Equation 14, the partial log-

likelihood, is what is most frequently implemented and optimized. In the context of the 

following discussion, the distinction is unimportant, and both the partial likelihood and the 

partial log-likelihood may and are used interchangeably. The maximum partial log-

likelihood estimates for the 𝛽𝛽-parameters are obtained from the total product of individual 

relative risk contributions for each of the 𝑛𝑛 individuals in the data (as shown in Equation 

14). For the 𝑖𝑖-th individual’s survival time, the contribution of the individual to the overall 

likelihood function is given by the individual’s risk score at this time divided by the summed 

risk scores of all of the other individuals at risk (did not experience kidney failure yet) and 

uncensored (𝑅𝑅(𝑡𝑡𝑖𝑖)) up to that time. 𝛿𝛿𝑖𝑖 is an event indicator, defined for the 𝑖𝑖-th individual 

as 

𝛿𝛿𝑖𝑖 = �0, censored
1, otherwise . 
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This means that censored individuals only contribute indirectly to parameter estimates via 

the summation over the remaining risk set, 𝑅𝑅(𝑡𝑡𝑖𝑖), in the denominator – assuming those 

individuals have a survival time greater than 0. The treatment of censored individuals for 

the purposes of survival analysis modeling in advanced CKD is under continued 

evaluation for this reason given the potential for biased parameter estimates [47]. 

Parameter estimates are obtained through an iterative procedure such as the 

Newton-Raphson procedure or gradient descent. The Newton-Raphson is commonly 

implemented in survival analysis software and so it is the procedure used in this thesis. 

The estimated 𝛽𝛽-parameters at the (𝑠𝑠 + 1)-th iteration under Newton-Raphson are given 

by 

𝜷𝜷𝑠𝑠+1 = 𝜷𝜷𝑠𝑠 + 𝑰𝑰−1(𝜷𝜷𝑠𝑠)𝒖𝒖(𝜷𝜷𝑠𝑠) , 

where 𝑰𝑰−1 is the inverse of the Fisher information matrix (which in this case is also the 

Hessian matrix taken at the negative log-likelihood function), and 𝒖𝒖 is a vector of first 

derivatives of the log-likelihood function with respect to each 𝛽𝛽-parameter. Iteration starts 

at 𝜷𝜷 = [0,0, … 0], and terminates once the change in the log-likelihood is sufficiently small 

or the largest change across the 𝛽𝛽-parameters is sufficiently small. Once the Cox model 

parameters are obtained, the cumulative baseline hazard function and baseline survivor 

function can be recovered. 

As an added note, Equation 14 does not accommodate tied survival times – a 

common occurrence in studies with a sufficiently large sample size [51]. This places 

ambiguity on which individuals to include in the risk set underlying the denominator when 

computing the partial likelihood contribution for each of the tied individuals. A common 

and simple approximation is the Breslow estimate, which simply ignores the ties and 
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includes a term for each of the individuals with tied survival times. In each of these terms, 

all of the other tied survival times are included in the risk set in the denominator. 

 

2.2.5.2 Time Varying Covariates 

Up to now, the assumption has been that the Cox model incorporates covariates whose 

values remain constant over time. That is, the covariate value does not change with time. 

In clinical data, this is often not the case, and a patient may have a covariate measured at 

multiple timepoints throughout the study. The Cox model can accommodate the analysis 

of these types of covariates. Equation 11 is already formulated to accommodate time 

varying covariates. Covariates in 𝒙𝒙 will simply take on the time-updated covariate value in 

the 𝑗𝑗-th time period. 

 Time varying covariates do introduce some complexities in obtaining predicted 

survivor curves compared to the non-time varying Cox model. Under time varying 

covariates, Equation 13 no longer holds. In lieu, the relation 

𝑃𝑃𝚤𝚤�(𝑡𝑡, 𝑡𝑡 + ℎ) = exp�−�𝐻𝐻�0(𝑡𝑡 + ℎ) −𝐻𝐻�0(𝑡𝑡)� ∗ 𝑟𝑟𝑖𝑖�  , (15) 

given by Altman and De Stavola allows for the calculation of an approximate conditional 

probability of survival through an interval 𝑡𝑡, 𝑡𝑡 + ℎ, and thus can be used to prognosticate 

an individual’s future survival probability [57]. 

 Estimation of the parameters under time-varying covariates is mostly the same. 

I.e., Equation 14 is used, but instead of assuming time-constant covariate values, the 

most recently available covariate values are used to compute the respective risk scores 

at each event time. 
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2.3 Machine Learning 

In subsequent chapters, several machine learning algorithms were applied for the 

prediction of kidney failure over short timeframes. This section lays out the requisite 

machine learning knowledge for understanding the findings that are presented in later 

chapters.  

Machine learning is frequently defined as a “subset of artificial intelligence (AI)”, 

where specific types of algorithms are exploited for their ability to automatically extract 

patterns from raw data without being provided any explicit instructions or rules [58]. One 

could argue, with some pedantry, that the “machine learning is a subset of AI” buzz phrase 

is somewhat ambiguous and inconsequential as a classification. Specifically, machine 

learning is the statistical estimation of functions. It is computational statistics grounded in 

a set of unique machine learning practices and paradigms. While this means that simple 

statistical models such as the Cox regression technically constitute machine learning, the 

term machine learning is more typically invoked with the application of algorithms that go 

beyond pure optimization (and can learn) to large datasets that contain many covariates. 

For example, the individual decision trees in random decision forests (introduced in 

Section 2.3.2) are simple models that directly optimize an objective function with respect 

to the data. Aggregating many such trees together into a random forest does not include 

new optimization criterion or change the objective functions of the individual decision 

trees. Yet, the learning ability is greatly improved by this aggregation, and deeper patterns 

can be extracted [59]. In contrast to models like Cox regression, much of the learning in 

machine learning occurs in this indirect manner.  

Machine learning algorithms can be broadly categorized into supervised, 

unsupervised, and reinforcement learning algorithms. While each has the potential to be 

applied to clinical problems of this manner, only the first is used and presented in this 
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thesis. Thus, the goal in supervised learning is to build a model able to take input features 

(covariates) and generate the desired response. The term supervised stems from the 

paradigm through which this is done. When using a supervised learning algorithm to build 

a model, there is a prerequisite that the desired response for each instance in the set of 

input data used to train the model is known. This information is explicitly provided when 

estimating the parameters of the model. 

 

2.3.1 Evaluation Metrics 

Several evaluation metrics are pertinent to the studies and analyses contained within this 

thesis. Clinical prediction models are typically judged over two fundamental axes: 

discrimination and calibration. A good model is said to be well-calibrated and good at 

discriminating between data observations. 

Discrimination refers to a model's ability to discriminate between observation types 

(e.g., event or no event, diseases or no disease, patient cohorts, disease class). In the 

context of this work, a model should predict higher risk of kidney failure for someone about 

to experience kidney failure than for a person with stable CKD. A discrimination metric 

summarizes over all of the test instances how a model’s prediction agrees with the actual 

observed outcomes. That is, a discrimination metric would typically report some aggregate 

measure of how good a model is at sorting patients in relation to one another or how 

accurately it predicts the actual outcomes. An example of a discrimination metric that is 

frequently reported in CKD progression studies is the concordance index. The 

concordance index reports the rank correlation between predicted risk and actual survival 

times. I.e., how good is a model at sorting pairs of observations. 

On the other hand, calibration measures the alignment between predicted risk 

probabilities and the actual probabilities of the outcomes. A well-calibrated model 
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produces predicted probabilities that accurately reflect the true likelihood of an event 

occurring. This renders model predictions interpretable. For example, for a group of 

patients with predicted probability of kidney failure in the range of 50 to 60%, the actual 

incidence of kidney failure should be in the same range for a well-calibrated model. 

Calibration is traditionally reported using calibration curves plotting the predicted risk vs. 

the observed risk stratified by risk quintile or decile. 

2.3.1.1 Classification 

The discrimination and calibration metrics discussed in the prior section can be 

categorized as describing the goodness of fit of a model. However, they are limited in their 

ability to inform on the actual clinical utility of a model [60]. Classification metrics may be 

of benefit in this regard. A model being assessed on a classification problem is tasked with 

correctly assigning a class label (e.g., prepare for dialysis or not) to data instances. To 

evaluate models on this task, a confusion table can be constructed counting the 

combination of predicted and actual class-memberships for all subjects. Table 2-2 shows 

a confusion matrix for a binary (two possible) class scenario. From this table, it may be 

understood that for a classifier correctly predicting and assigning a positive label to an 

instance of the positive class is a true positive (TP) prediction. To predict negative for that 

same instance would yield a false negative (FN). Likewise, for a negative outcome group, 

true negative and false positive predictions must be tabulated. In the context of a 

prediction model advising on a clinical decision, true positives and true negatives 

represent correct decisions, while false positives and false negatives represent incorrect 

guidance. From these base quantities, a number of important classification metrics may 

be derived. Each of these metrics directly provide a quantitative measure to help in 

understanding a model’s effectiveness in predicting one or the other class label and the 
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types of errors the model is producing. The combination of reported metrics depends on 

the intended application. For example, if the minimization of false positives is paramount, 

the precision metric will likely be used as the primary evaluative marker for the model. 

Regardless, a confusion matrix must be summarized with at least two parameters to reflect 

the trade-offs in selecting an outcome probability cut-off when devising a classifier. 

 

Table 2-2: The confusion table and its metrics. 

Confusion Table Metrics 

  Predicted Precision =
𝑻𝑻𝑻𝑻

𝑻𝑻𝑻𝑻 + 𝑭𝑭𝑭𝑭
 

  
False True Sensitivity = Recall =

𝑻𝑻𝑻𝑻
𝑻𝑻𝑻𝑻 + 𝑭𝑭𝑭𝑭

 

A
ct

ua
l False TN FP Specificity =

𝑻𝑻𝑻𝑻
𝑻𝑻𝑻𝑻 + 𝑭𝑭𝑭𝑭

 

True FN TP F1 = 2
Precision × Sensitivity
Precision + Sensitivity

 

Abbreviations: TN, true negative; FP, false positive; FN, false negative; TP, true positive. 

2.3.1.2 Regression and Brier Score Metrics 

A number of regression metrics are pertinent to the understanding of this thesis. 

Regression metrics are required when predicted values are being compared with a 

continuous target. The metrics used are the mean of the absolute errors (MAE), and the 

root of the mean of the squared errors (RMSE). Respectively, they are defined as: 

MAE =
1
𝑛𝑛
�|𝑦𝑦�𝑖𝑖 − 𝑦𝑦�𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

 

and 

RMSE = �
1
𝑛𝑛
�(𝑦𝑦�𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1
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These metrics quantify the numerical accuracy of predicted values (𝑦𝑦�𝑖𝑖) with each true 

value (𝑦𝑦�𝑖𝑖). They are used to assess the performance of the imputation methods explored 

in Section 3.4.1. 

 Similar to the RMSE, but intended for a binary target, is the Brier Score. The Brier 

Score amounts to the mean squared error (RMSE2) between a model’s probabilistic 

predictions (𝑦𝑦�𝑖𝑖) and the true binary outcomes (𝑦𝑦�𝑖𝑖), thereby making it a measure of model 

calibration: 

Brier Score =
1
𝑛𝑛
�(𝑦𝑦�𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 

 

2.3.2 Random Decision Forests 

The random decision forest algorithm, or a random forest, is a bagged ensemble method 

for supervised machine learning [61]. Random forests bag an ensemble of 𝑘𝑘 decision 

trees. Meaning, these 𝑘𝑘 decision trees are trained independently and in parallel of each 

other but are bagged (grouped) together into a decision forest to operate as an ensemble.  

First, what is a decision tree? As implied by the supervised nature of random 

forests, decision trees are a type of supervised learners. Decision trees mathematically 

amount to acyclic graphs that organize nodes into a branching structure. A decision tree 

is pictured in Figure 2-6 below.  

Each decision tree in Figure 2-6 is built by recursively partitioning the feature 

space into non-overlapping segments. The predominant algorithms used to build these 

trees include ID3, C4.5, C5.0, and CART [62]. The implementation used in this thesis is 

the CART algorithm, or the Classification and Regression Trees algorithm [62, 63]. Per an 



41 

 

 

implementation’s documentation [63], it is possible to break down this decision tree 

algorithm (CART) into a mathematically succinct formulation. Let: 

o 𝑋𝑋 represent the set of feature vectors (in this case, a matrix of 𝑘𝑘 follow-up 

visits × 𝑗𝑗 features) and let 𝒚𝒚 represent the associated vector of labels. 

o the sample set at node 𝑚𝑚 be represented by 𝑄𝑄𝑚𝑚 and have sample size 𝑛𝑛𝑚𝑚. 

o 𝜃𝜃𝑚𝑚 = {(𝑗𝑗, 𝑡𝑡) | 𝑗𝑗 ∈ 𝐽𝐽𝑚𝑚, 𝑡𝑡 ∈ 𝑇𝑇𝑚𝑚(𝑗𝑗)} represents the set of candidate splits for a 

node 𝑚𝑚, where each possible split is defined by one of the features 

available at the node (𝐽𝐽𝑚𝑚), and a specific split point 𝑡𝑡, where 𝑡𝑡 comes from 

the set of possible split points for that feature at node 𝑚𝑚 (𝑇𝑇𝑚𝑚(𝑗𝑗)).1 

o 𝐻𝐻 represent a loss function. 

Decision tree building begins at the root node and recursively builds branches by splitting 

each node’s samples until one of the stopping criteria is reached (see below). Thus, 

beginning at a node 𝑚𝑚, for each candidate split 𝜃𝜃 in 𝜃𝜃𝑚𝑚, let 𝑄𝑄𝑚𝑚 be partitioned as 

𝑄𝑄𝑚𝑚
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜃𝜃) = �(𝑥𝑥,𝑦𝑦) | 𝑥𝑥𝑗𝑗 ≤ 𝑡𝑡� 

and 

𝑄𝑄𝑚𝑚
𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡(𝜃𝜃) = 𝑄𝑄𝑚𝑚 \ 𝑄𝑄𝑚𝑚

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜃𝜃) , 

where 𝑄𝑄𝑚𝑚
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜃𝜃) will contain all of the feature vector - label pairs, (𝑥𝑥,𝑦𝑦), where feature 𝑗𝑗’s 

value is within the treshold 𝑡𝑡. It follows that 𝑄𝑄𝑚𝑚
𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡(𝜃𝜃) will be the subset of data instances 

from 𝑄𝑄𝑚𝑚 that are not in 𝑄𝑄𝑚𝑚
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜃𝜃). In the CART implementation used in this thesis, the  

  

 
1 It is important to clarify that in the CART implementation for the original decision tree, every feature 
is considered in the set of candidate node splits, and thus there is no explicit distinction for the sets 
𝐽𝐽𝑚𝑚 and 𝑇𝑇𝑚𝑚. In the random forest algorithm, where a random subset of features is considered at 
each node, this parameterization becomes relevant again, as both the set of features available, 𝐽𝐽𝑚𝑚, 
and the set of split points, 𝑇𝑇𝑚𝑚, will be specific to that node. 
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Figure 2-6: Illustration of a decision tree classifier obtained on the patient sample from sections prior. Tree 
(A) is unweighted, while Tree (B) had the positive class weighted 5× greater than the negative. Splits are 
shown in rectangles, while terminal nodes have rounded corners. Creatinine is used as the single feature to 
partition the data. The Gini (impurity metric) of the Samples present in each box is given. The class distribution 
for those samples is given by Value, and in the case of Tree (B), is 5× weighted for the positive (minority) 
class. 
 

midpoints between consecutive measurements (sorted) are utilized for each candidate 

split. For example, if the optimal partitioning at a node occurred between the adjacent 
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samples of creatinine equal to 404 µmol/L and creatinine equal to 411 µmol/L, the resulting 

split point is the midpoint between these samples: 407.5 µmol/L (Figure 2-6B). 

Out of all of the candidate partition pairs yielded from the split set 𝜃𝜃𝑚𝑚 for the node 

𝑚𝑚, the best split is the one that minimizes the impurity metric 𝐻𝐻. In this thesis, the impurity 

metric, or loss function that is used is the Gini information criterion, or the Gini index. It 

follows that, for node 𝑚𝑚, the selected parameters 𝜃𝜃∗ (split feature and threshold), are 

those that minimize the sum of the impurity criterion in each candidate node’s sample set. 

Concretely, 

𝐿𝐿(𝑄𝑄𝑚𝑚, 𝜃𝜃) =
𝑛𝑛𝑚𝑚
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑛𝑛𝑚𝑚
𝐻𝐻 �𝑄𝑄𝑚𝑚

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜃𝜃)� +
𝑛𝑛𝑚𝑚
𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡

𝑛𝑛𝑚𝑚
𝐻𝐻 �𝑄𝑄𝑚𝑚

𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡(𝜃𝜃)�  ,  

where 𝐿𝐿(𝑄𝑄𝑚𝑚,𝜃𝜃) is the computed loss (impurity) for the given candidate split 𝜃𝜃. And so, 

the optimal parameters are given by 

𝜃𝜃∗ = arg min
       𝜃𝜃

𝐿𝐿(𝑄𝑄𝑚𝑚,𝜃𝜃) . 

The CART algorithm recurses unto 𝜃𝜃∗ until one of the specified hyperparameters’ limits is 

activated or node 𝑚𝑚 becomes a terminal node with 𝑛𝑛𝑚𝑚 = 1. 

 As mentioned previously, the criterion selected to be H is the Gini index. For a 

node 𝑚𝑚, the Gini impurity is defined as 

𝐻𝐻𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑄𝑄𝑚𝑚) = �𝑝𝑝𝑚𝑚(𝑘𝑘) − 𝑝𝑝𝑚𝑚(𝑘𝑘)2
𝑘𝑘

 ,  

where 

𝑝𝑝𝑚𝑚(𝑘𝑘) =
1
𝑛𝑛𝑚𝑚

� 𝐼𝐼(𝑦𝑦 = 𝑘𝑘)
𝑦𝑦∈𝑄𝑄𝑚𝑚

 , 
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and 𝐼𝐼(𝑦𝑦 = 𝑘𝑘) is an indicator function for instances of the 𝑘𝑘-th class. And so, 𝑝𝑝𝑚𝑚(𝑘𝑘) is the 

𝑘𝑘-th class’s proportion in 𝑄𝑄𝑚𝑚. An understanding of the above expressions may be 

facilitated from Figure 2-7. 

 

Figure 2-7: Illustration of the Gini metric’s range as a function of the positive class proportion, 𝒑𝒑𝒎𝒎(𝟏𝟏), and the 
negative class proportion, 𝒑𝒑𝒎𝒎(𝟎𝟎), for a hypothetical sample, 𝑸𝑸𝒎𝒎. 
 

The range and effect of the Gini function is also evident from the decision trees in Figure 

2-6. Each of the trees in Figure 2-6A and Figure 2-6B are decision trees fit to the same 

patient sample from before. Both trees are specified to a maximum depth of two and are 

fit using a single feature to ensure a consistent result [64]. The difference between Tree A 

and Tree B, is that Tree B is fit with a weighting applied to instances of the positive class. 

The positive class is weighted to be 5× the value of the negative class. From this, it may 

be observed at the root node that the 12 positive instances in the unweighted tree turn 

into an equivalent weighting of 60 positive instances in the weighted tree. As a result, the 
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impurity of the node increases, and the resulting tree structure is affected. The Gini values 

in Figure 2-6 may be easily calculated by hand using the equations above. 

The effect can be further studied by examining the resulting classification metrics 

for each tree. Respective confusion tables are provided in Table 2-3 below. It may be 

illustrated from this example that the weighting improved positive class sensitivity to 83%, 

compared to the unweighted tree’s 75%. Specificity was slightly improved – from 94% to 

96%. However, this increased sensitivity to the positive class came at a substantial 

reduction to precision – from 82% to 77%. 

 

Table 2-3: Confusion tables for the decision trees in Figure 2-6, obtained from the data used to fit the 
trees. 

Confusion Table (Tree A) Confusion Table (Tree B) 

  Predicted   Predicted 
  False True   False True 

A
ct

ua
l False 49 

TN 
2 
FP 

A
ct

ua
l False 48 

TN 
3 
FP 

True 3 
FN 

9 
TP True 2 

FN 
10 
TP 

Abbreviations: TN, true negative; FP, false positive; FN, false negative; TP, true positive. 

  

At their core, random forests employ decision trees. They bag an ensemble of 

decision trees together to mitigate the instability and overfitting that singular decision trees 

are prone to. The number of trees to train in each ensemble is a hyperparameter in the 

algorithm. The fundamental idea that was implemented in random forests to achieve 

improved performance was to ensure that the individual decision trees were decorrelated 

from each other. The first measure by which this may be achieved is to train each 

individual decision tree on a unique sample of the training data. In this case, bootstrap 

resampling is used. Secondly, as previously mentioned, decision trees in a random forest 

consider a unique subset of features to split on at each node undergoing a potential split. 
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This differs to vanilla decision trees where all features are considered for a split. The 

specific random forest types employed in this thesis are now discussed. 

2.3.2.1 Random Forest Classifier 

Most of the discussion to this point has been in relation to the random forest classifier. 

Each tree in the random forest classifier behaves similar to the singular CART decision 

tree, but with the added modifications of the random selection of features and 

bootstrapping, discussed above. The output of a trained random forest classifier is a 

predicted probability of membership to the positive class, in the binary case. This output 

is an aggregation of the predicted output of each of the singular decision trees in the 

random forest model. 

2.3.2.2 Random Survival Forest 

The decision trees, or survival trees in a random survival forest behave similar to the 

random forest + CART algorithms upon fitting [65]. However, within each survival tree, the 

loss at a splitting node is instead calculated using the log-rank test of the Kaplan-Meier 

estimate of survival in the two candidate child nodes. The candidate nodes are split to 

maximize survival dissimilarity between each group, 𝑄𝑄𝑚𝑚
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜃𝜃) and 𝑄𝑄𝑚𝑚

𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡(𝜃𝜃). Predictions 

are generated in the same manner as the other discussed random forest models. Random 

survival forest output amounts to the Kaplan-Meier estimate of survival of the individuals 

(𝑄𝑄𝑚𝑚) in the terminal node of each survival tree, aggregated over each survival tree. 

 

2.4 Conclusion 

In Chapter 4 we evaluate the application of Cox prediction models and machine learning 

models to predict kidney failure at short timeframes and reduce the incidence of unplanned 
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dialysis. The objective is to classify patients at each follow-up visit so as to precisely inform 

the clinician and patient on the imminent risk of kidney failure. The hypothesis is that the 

specific contexts of this clinical problem demand more specific models than longer-

timeframe kidney failure risk prediction models such as the KFRE. Further, the hypothesis 

is that machine learning models able to account for higher-dimensional data may provide 

superior short timeframe kidney failure risk prediction. With these models and other data, 

the clinician and patient can have a timely and informed discussion towards planning a 

course of action that optimizes survival, quality of life and health care costs while 

respecting patient wishes. But, before that, in Chapter 3 the dataset used to establish 

these models is described in detail. 
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Chapter  3: Dataset 

3.1 Overview 

This section provides an overview of the background and preparation of the main dataset 

used in this study. It highlights where the data was collected, the time period of data 

collection, and the method of collection. Additionally, this section outlines the specific 

variables collected in the dataset. It details the types of variables, such as demographic, 

clinical, and supplementary variables. Finally, it describes data cleaning, imputation, and 

complementing through feature engineering. 

 

3.2 The Ottawa Hospital Multi-Care Kidney Clinic Dataset 

The Ottawa Hospital Multi-Care Kidney Clinic Dataset was collected from the Multi-Care 

Kidney Clinic (MCKC) at The Ottawa Hospital in Ottawa, Ontario, Canada. The MCKC is 

a specialized facility that focuses on the treatment and management of kidney diseases 

and provides advanced care to patients with various kidney conditions. The Ottawa 

Hospital is a 1,150-bed academic tertiary care center with a catchment area of 

approximately 1.3 million people and the MCKC is the sole such program within the 

catchment area. Further information on advanced CKD clinics and the services they 

provide can be gathered from reading Section 2.1.5 and Section 2.1.6. 

The data collection process at Ottawa MCKC was conducted between 2010 and 

2021 using a combination of methods, including electronic medical records (EMRs), 

patient surveys, and nurse and clinician documentation. The EMRs contain detailed 

information about patients' medical history, diagnoses, medications, laboratory results, 

and social factors such as education level and marital status. This wide range of variables 

are meant to capture important patient characteristics and clinical trends to facilitate 
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optimal monitoring and treatment across different CKD progression types and to empower 

research in this population [4, 5, 55, 66]. All together, these variables assemble into a 

detailed and granular dataset encompassing a wide range of data features enabling 

detailed retrospective analysis of this patient population. This dataset underpins all of the 

models derived in this thesis. 

 

3.2.1 Contents 

The specific contents of the dataset total some 350 unique columns. The most important 

clinical patient variables are tabulated in Table 3-1. Not included in the table are the 

laboratory measurements previously listed in Table 2-1 (but are contained in the dataset). 

Not all variables were used in this work, lending the database for future research. 

 

3.2.2 Ethics and Privacy Compliance 

It is important to note that the dataset was de-identified to ensure patient privacy and 

comply with ethical guidelines. Any personal identifying information, such as names, 

addresses, specific hospital identification numbers, and precise birthdates were removed 

or obfuscated to protect patient confidentiality. Throughout the data analysis process, 

ethical considerations were paramount. The study adhered to strict ethical guidelines to 

ensure the protection of patient privacy, confidentiality, and data security. Additionally, the 

study obtained appropriate approvals from relevant institutional review boards and 

complied with all legal and regulatory requirements. Specifically, all protocols were 

approved by the Ottawa Health Science Network Research Ethics Board (Protocol ID 

#20150457-01H). Informed consent was waived due to the retrospective nature of the 

dataset, and strict data access controls were implemented to prevent unauthorized use or 

disclosure of sensitive information. Any potential conflicts of interest were disclosed and 
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managed appropriately to maintain the integrity and objectivity of the findings. Rigorous 

data validation and verification procedures were employed to ensure the accuracy and 

reliability of the results. 

 

Table 3-1: Key patient variables used in subsequent analyses (in addition to those in Table 2-1). 

Outcome Variables  Details 
Date of death  Rounded to first day of the month 

Date of kidney replacement therapy  Rounded to first day of the month 

Kidney replacement therapy modality  Peritoneal / hemodialysis 

Inpatient / outpatient dialysis  Urgent dialysis requiring hospitalization, 
home dialysis, etc.  

Demographics   

Age  From date of birth and time of visit 

Sex  Male/Female 

Race  Self-defined 

Disease Etiology and Comorbidities   

CKD type   

Diabetes  Yes/No 

Hypertension  Yes/No 

Coronary artery disease  Yes/No 

Congestive heart failure  Yes/No 

Anthropometrics and Vital Signs   

Heart rate  At rest 

Systolic and diastolic blood pressure  At rest 

Body mass index   

Medications   

Diuretics  Yes/No and dates prescribed 

ACE inhibitors and ARB  Yes/No and dates prescribed 

Other Important Variables   

Dates of visits with clinic MD  Used to anchor laboratory values 

Opted for conservative care management  An exclusion criterion 
Abbreviations: ACE, angiotensin-converting-enzyme; ARB, angiotensin II receptor blocker; MD, clinician / 
nephrologist. 
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3.2.3 Preprocessing 

Thorough preprocessing was paramount to ensure data quality and consistency. This 

phase occurred early in the project and involved a succession of steps including data 

cleaning and handling of missing data. 

- Data cleaning: 

o Aimed to identify and rectify manual-entry errors, inconsistencies, or 

outliers present in the dataset. It involved scrutinizing the variables for 

improbable values, data entry mistakes, and inconsistencies in coding. 

When errors or outliers were detected, appropriate actions, such as 

correction from original data sources, imputation, or removal, were taken 

to rectify them. The dataset underwent two rounds of manual review with 

administrative clinic nurses. 

- Missing data: 

o Depending on the extent and nature of the missingness, various techniques 

were employed to maximize data availability. The specifics of the 

imputations performed are discussed in Section 3.4. Under extenuating 

circumstances, entire patient series or variables were excluded. 

 

3.2.4 Limitations 

Several important limitations may be identified with respect to the dataset. Specifically 

discussed are the particularities of this dataset, and their potential implications.  

Firstly, the generalizability of this dataset and the resultant models has yet to be 

tested in diverse healthcare settings. This dataset characterizes a cohort obtained from a 

single healthcare center, namely The Ottawa Hospital’s MCKC. The findings presented 

herein may therefore not be directly generalizable to other healthcare settings or patient 
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populations, but regardless are presumed to be representative of current local practice. 

Nevertheless, Chapter 4 and Chapter 5 demonstrated that the derived models validate 

well in external healthcare sites within Ontario where practice is similar. Practices further 

abroad – in other provinces or nations – may differ more significantly. The generalizability 

of findings may be jeopardized in these global settings. It is important to consider the 

specific context and characteristics of the dataset when interpreting the results. 

Second, missing data is a particular nuisance in this dataset due to the unfortunate 

collection timeline. Urine ACR has been continually validated to be a prime predictor of 

kidney function, warranting its inclusion in most kidney failure prediction models [40], and 

leading to a mandate for its collection in advanced CKD clinics by the Ontario Renal 

Network (ORN). This mandate came into effect between 2015 – 2016, and the effect of 

this will become apparent in Section 3.3. As such, the current dataset contains an artifact 

(high and non-random ACR missingness) that is difficult to mitigate. Had data collection 

commenced on 2016 or later, this would not be an issue. This characteristic, and more 

generally data missingness, place important constraints on the interpretations contained 

within this thesis. 

On this note, as with any observational study, the presence of unmeasured or 

unaccounted confounding factors may influence the observed relationships between 

variables. Once again, urine ACR is at the center of the issue. As mentioned in sections 

prior, medications are often administered to patients in order to manage hypertension and 

lower proteinuria (elevated levels of protein in the urine). This results in artificial 

fluctuations in a patient’s measurement series as demonstrated in the patient series in 

Figure 3-1. The figure shows the series of urine ACR measurements for the patient from 

our selected sample and the period over which ARB medication was prescribed. This is 

likely to be directly responsible for lowering the patient’s urine ACR values. It is difficult to 
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correct this confounding with simple binary indicators and is a direction for future work 

(Section 6.3). In summary, confounding is present in this dataset and should be 

acknowledged. 

 

Figure 3-1: Patient urine-albumin-to-creatinine ratio measurements and duration of ARB prescription. The 
patient’s time on the ARB medication is annotated in green.  
 

While extensive data cleaning and validation were performed, the dataset's quality 

is contingent upon the accuracy and completeness of the original data sources. Errors or 

inconsistencies in documentation or data entry may still be present, which could impact 

the validity of any analyses. 

Another potential limitation is the inclusion of data from multiple regional 

laboratories, which may use different methods for measurement. This source of variability 

may be interpreted as a source of biases in certain patients. Alternatively, this may be 

seen as capturing a wider range of data that may improve generalization to other practices. 

Finally, the time period over which the data were collected may have implications 

for any analysis, as medical practices, treatment protocols, and patient outcomes may 

evolve in the future. Once again, the findings should be interpreted within the context of 

the specific time period in which the data were collected. 
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3.2.5 Other Datasets Used in This Thesis 

Two additional datasets were obtained from independent patient cohorts. One cohort was 

obtained from Toronto’s Sunnybrook Hospital – part of the University Health Network 

(UHN). Another cohort was obtained from the Kingston General Hospital’s (KGH) 

advanced CKD patient group. Both patient populations are defined as advanced CKD 

cohorts. Given their location in Ontario, practices across these centers can be considered 

relatively uniform.  

A tabulation of important clinical characteristics for all three cohorts is in Table 3-2 

of Section 3.3.4. In summary, patients in the KGH and UHN cohorts were on average in 

the earlier stages of their CKD progression. In the table, this manifests as increased eGFR, 

decreased creatinine, reduced proteinuria, lower outcome rates, etc. This has the potential 

to distort the performance results due to lower outcome/label prevalence. It does not, 

however, inherently represent a barrier to successful application of a TOH-derived model 

to these external cohorts.  

 

3.3 Characteristics 

This data characteristics section delves into various aspects that describe the dataset and 

cohort. It highlights the time of entry for patients into the cohort and the duration of follow-

up, providing insights into the longitudinal nature of the dataset. This section also explores 

the nature of patient follow-up and any changes or trends in cohort characteristics over 

time. Furthermore, it discusses the presence of missing data and its impact on dataset 

integrity. 
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3.3.1 Patient Time of Entry and Duration of Follow-up 

As previously mentioned, patients entered the clinic and were monitored asynchronously 

over the specified time period (2010 – 2021). The dataset generally includes all such 

patients who were referred to the clinic during this time. Timing of referral is at the 

discretion of the primary nephrologist, though referrals are suggested when the estimated 

glomerular filtration rate (eGFR) is <25 mL/min/1.73m2 or the 2-year 4-variable KFRE 

score is >20% [10, 49]. Patients are typically seen in the clinic every three months, though 

this interval can vary from as often as every two weeks to as long as every six months per 

the discretion of the nephrologist. The median and mean survival times are approximately 

19 and 25 months respectively. These quantities represent the median and mean duration 

of follow-up for all of the observed patients in the dataset. The median survival time, 

stratified among several groups, can be gleaned from Figure 3-2 A-B by finding each 

curve’s point of intersection with 𝑆̂𝑆(𝑡𝑡) = 0.5.  

The duration of follow-up for each patient is defined as the period between the time 

of first referral and the time of outcome event, or the time of data collection for those 

patients still being followed. The time of entry represents the date when each patient's 

data was initially recorded within the cohort. Follow-up durations among patients varied 

due to a variety of factors. For example, the median duration of follow-up for patients 

presenting to the clinic with an initial creatinine over 300 µmol/L was than half that of 

patients presenting to the clinic with an initial creatinine on the other side of that threshold 

(Figure 3-2A). Other factors may influence patient survival time. For example, patients 

opting for conservative care management choose not to receive kidney replacement 

therapy in the form of dialysis or kidney transplantation. However, they continue to be 

followed in the clinic so that their quality of life and health can be maintained as much as 
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possible. These patients exist in large proportion in this dataset (roughly 400 patients). 

They are almost always excluded from analyses in kidney failure prediction.  

 

 

Figure 3-2: Kaplan-Meier estimate of survival among different patient groups. 

 

3.3.2 The Nature of Patient Follow-up 

The nature of patient follow-up provides valuable insights into the frequency and regularity 

of data collection. In this dataset, patient follow-up visits were scheduled at regular 

intervals, typically every 3 – 6 months. During each visit, various clinical measurements 

and assessments were recorded. Which variables were collected, and the practice 

surrounding their collection has been discussed in prior sections. Ultimately, the dataset 
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is a collection of short, irregularly sampled time series with a multitude of clinical predictors 

anchored to each time point. For the TOH MCKC, there were, on average, 6-7 follow-up 

visits (data time points) for each patient in the dataset. This number can vary: many 

patients with a single visit exist in the dataset, as do patients with over 20 visits. Of the 

patients contained within the dataset, most experienced an outcome event (death, 

dialysis, or kidney transplantation). But a subset of patients was still being followed at the 

time of data collection. 

 

3.3.3 Outcomes 

As mentioned in Section 2.1.6, outcomes can be broadly classified into either kidney 

failure, or death. Here, kidney failure is defined as kidney replacement therapy (KRT), 

meaning the initiation of dialysis or kidney transplantation. Within this category, two 

subgroups are differentiated for the purposes of this thesis. They are, dialysis initiation in 

an unplanned setting (unplanned dialysis; UD), and dialysis initiation in the planned setting 

(planned dialysis; PD). As previously mentioned, unplanned dialysis is best defined as 

initiating dialysis in the inpatient setting (i.e., the patient presented to the emergency room 

and was admitted for hospital care). Planned dialysis is then defined as initiating dialysis 

in the outpatient setting or pre-emptively undergoing kidney transplantation. The 

incidences for these outcomes, as well as the outcome of death, are plotted with respect 

to time in Figure 3-3. 

In the context of predicting kidney failure, death may be treated in different ways. 

In certain cases, death may have resulted from kidney failure, and therefore could be 

considered as a surrogate for unplanned dialysis. However, death may also result from an 

accident, in which case it may be considered as a censoring event. The cause of death, 

however, is not always so obvious, as patients may have comorbidities or the cause of 
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death is not documented. In some contexts, death may be treated as a competing event 

(with kidney failure defined as kidney replacement therapy) [47, 67, 68]. In the context of 

this work, death is treated in accordance with the data labeling policy that was employed. 

I.e., “is the patient within 6 or 12 months of a kidney failure event defined as the initiation 

of kidney replacement therapy?” The drawbacks of this approach are discussed in 

Chapter 6 as an avenue for further research. 

 

 

Figure 3-3: The Ottawa Hospital Multi-Care Kidney Clinic cohort patient numbers over time. Panel (B) is the 
breakdown data of the Exited group in panel (A). Sampling is performed quarterly. 
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3.3.4 Variables 

Variable distributions are available in Table 3-2. The characteristic worth highlighting with 

respect to the dataset variables is the high missingness in a number of important clinical 

characteristics (Figure 3-4). The most important missing variable is uACR, which as 

previously mentioned, only started being required to be collected in 2015. In 2020 and 

2021 a higher rate of missing blood pressure (BP) measurements was noted, associated 

with greater prevalence of virtual visits in response to the COVID-19 pandemic. The 

impact of this data characteristic could be profound in either data loss or added bias. For 

example, the magnitude and nature of the missingness in measured diastolic and systolic 

blood pressure in the KGH external cohort necessitated the exclusion of these variables 

from the analyses. This was because this covariate data was missing in 50% of cases, but 

more importantly, was only filled in in the later times of each patient series. An analysis of 

missing variables in the TOH cohort is available in Section 3.4. 

 

 

Figure 3-4: Variable missingness across the available patient data, with year of data collection.  
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Table 3-2: Baseline characteristics of study cohorts. 

Characteristics TOH  
(N = 1849) % KGH  

(N = 1033)  % UHN  
(N = 323) % 

Demographics       

Age, Mean (SD) 66 (15) 0 * 70 (14) 0 68 (17) 0 

Female Sex, N (%) 690 (37) 0 401 (39) 0 129 (40) 0 

Laboratory Data       

Creatinine, Mean (SD) 308 (97) 0.9 * 277 (97) 3.5 * 252 (87) 0 

eGFR, Mean (SD) 19 (7) 0.9 * 21 (7) 3.5 * 23 (8) 0 

uACR, Median (IQR) 162  
(49, 333) 32.2 * 109  

(29, 282) 13.4 * 84  
(27, 219) 0.2 

Calcium, Mean (SD) 2.23 (0.15) 3.7 * 2.29 (0.18) 7.7 * 2.30 (0.14) 1.3 

Phosphate, Mean (SD) 1.37 (0.31) 4.4 * 1.32 (0.31) 7.9 * 1.30 (0.27) 1.5 

Bicarbonate, Mean (SD) 24 (3) 3.5 * 23 (4) 7.1 * 23 (3) 1.2 

Potassium, Mean (SD) 4.5 (0.6) 1.2 4.6 (0.6) 3.8 * 4.7 (0.6) 0.9 

Albumin, Mean (SD) 35 (5) 4.7 35 (6) 8.5 * 40 (5) 1.6 

Comorbidities       

Diabetes, N (%) 1110 (60) 0 634 (61) 0 185 (57) 0 

Hypertension, N (%) 1689 (91) 0 909 (88) 0 307 (95) 0 

CHF, N (%) 408 (22) 0 * 170 (16) 0 * 40 (12) 0 

Vital Signs / Anthropometrics       

Systolic BP, Mean (SD) 137 (21) 9.1 136 (21) 36 134 (21) 37.5 

Diastolic BP, Mean (SD) 72 (13) 9.4 73 (12) 36 74 (13) 37.5 

BMI, Mean (SD) 29.9 (7.1) 3.3 * 31.3 (7.9) 51.8 29.5 (12.0) 16 

Outcomes       

Being followed, N (%) 281 (15)  363 (35)  182 (56)  

Kidney transplantation, N (%) 91 (5)  10 (1)  8 (2)  

Planned (outpatient) dialysis, N (%) 682 (37)  300 (29)  63 (20)  

Unplanned (inpatient) dialysis, N (%) 435 (24)  161 (16)  22 (7)  

Died in predialysis, N (%) 360 (19)  199 (19)  48 (15)  

Abbreviations: SD, standard deviation; IQR, inter-quartile range; eGFR, estimated glomerular filtration rate; 
N, number; TOH, The Ottawa Hospital; KGH, Kingston General Hospital; UHN, University Health Network 
Toronto; %, percent missing from dataset; uACR, urine albumin-to-creatinine ratio; eGFR, estimated 
glomerular filtration rate; CHR, congestive heart failure; BMI, body mass index; BP, blood pressure. 
*: Significantly different from TOH at p<0.01. Welch’s Test is used for continuous covariates where the 
assumptions of normality are met. Mann-Whitney U Rank Test is used for continuous covariates that are not 
normally distributed. A 𝑋𝑋2 test is performed for binary covariates. 
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3.4 Missing Data 

The high missingness in key predictors, namely urine albumin-to-creatinine ratio (uACR) 

(shown in Section 3.3), introduces additional complexity and risk for bias into a model. 

Laboratory measurements such as uACR are frequently missing and not at random [69], 

as will be further evidenced in the coming sections. This makes the complete mitigation of 

bias difficult, and likely impossible. Nevertheless, being a significant predictor, ignoring of 

uACR is detrimental. To this end, two main approaches are immediately evident. The first 

involves excluding those patients entirely. But, this was ruled out for two reasons: (1) it 

would reduce the patient cohort to nearly half, thereby increasing the risk for model 

overfitting, and (2) doing so would bias the sample population in terms of sex, bicarbonate, 

calcium, phosphate (data shown in Table 3-6). 

An alternative approach is to impute missing values based on other corelates 

within the dataset. In this section, several imputation methods are presented and 

evaluated for two types of scenarios: 1) interpolating inner measurement series values 

(those missing values in-between one or more observed measurements), and 2) for 

baseline value imputation (missing values occurring at the beginning of a patient 

measurement series). 

 Save for one of the imputation methods to be presented, the approaches 

considered here operate within the individual patient series. Time-series data often exhibit 

autocorrelation, meaning that earlier values can explain or contribute information on later 

values. This is especially true for many of the covariates present in this clinical dataset. 

Additionally, in the context of this clinical dataset where variables are frequently 

confounded by outside factors such as medications, imputing using information local to 

the patient makes intuitive sense for accurate prediction of missing values over population, 

or imputation using models of relationships with other patient-specific covariates from the 
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same timepoint. This section discusses the imputation methods applied to the datasets 

utilized in these analyses, including those of Chapter 4. 

 

3.4.1 Imputation Methods 

Two primary types of missing values may be identified in these data. Missing values may 

be neighbored by either one or two observed measurements. For example, in Figure 

3-5B, the patient is missing a uACR measurement at initial visit (𝑡𝑡 = 43 months before 

event) and is thus neighbored by only one observed data point at 𝑡𝑡 = 35 months. 

Continuing through the series, more missing values pop up intermittently between 

recorded observations. Imputing data between neighboring points allows the imputation 

method to leverage multiple data points (interpolate), potentially reducing imputation error. 

Projecting outwards (extrapolating) involves making assumptions about the data’s trend. 

It follows that these methods are generally more volatile and error prone. Figure 3-6 

illustrates the two approaches studied for imputing missing values neighbored by two 

observed measurements. They are discussed in the coming sections. Note that the 

measurement timelines in Figure 3-5 to Figure 3-7  are illustrated in a piecewise-constant 

manner to be in line with the manner time-varying Cox models typically treat the space in 

between measurements. 

3.4.1.1 Last Observation Carried Forward (LOCF) 

Last observation carried forward (LOCF) is a naïve approach to data imputation that is 

generally reported to produce misleading and erroneous values [70]. The procedure is 

simple: carry forward the most recently observed measurement value (Figure 3-6A). It is 

worth noting that data characteristics vary, and thus so too will the optimal imputation 

method. In the case of a dataset composed of many short and noisy time series 
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measurements, a simplistic approach has the added benefit of interpretability and low 

variance. It is also worth noting that although this approach is used to fill in data missing 

in between neighboring measurements, it is fundamentally an extrapolation process from 

the last observation. 

 

 

Figure 3-5: Illustration of a series of urine albumin-to-creatinine ratio (ACR) measurements for a single patient. 
In (A), the original series is shown. In (B), the baseline measurement is intentionally dropped for the 
experiment where several baseline imputation methods are compared (Section 3.4.2).  
 

3.4.1.2 Time-Scaled Linear Interpolation 

Time-scaled linear interpolation (Figure 3-6B) involves connecting neighboring 

measurements with a line and imputing missing values at the appropriate time points along 
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the line. It is equivalent to a time-weighted average between neighboring points. This 

method therefore uses two data points to perform imputation, as opposed to the single 

datum used in LOCF, and assumes a linear trend between the two adjacent 

measurements. 

 

 

 

Figure 3-6: Example of the two interpolation strategies being performed on urine albumin-to-creatinine ratio 
(uACR) measurements for one of the patients from the selected patient sample from sections prior. Panel (A) 
demonstrates the last observation carried forward (LOCF) approach. Panel (B) demonstrates a time-scaled 
linear interpolation approach. Note that the difference between the imputed values in panels (A) and (B) is 
slight in this particular patient. 
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3.4.1.3 Next Observation Carried Backward (NOCB) 

The first method for baseline imputation is the naïve method of carrying the next 

observation backward (NOCB). Simply put, the closest future observation is carried 

backward to impute the missing baseline value (Figure 3-7A). It is usually met with many 

of the same criticisms as LOCF. 

3.4.1.4 Sex-Stratified Median 

Another naïve imputation method involves computing the median of the specific laboratory 

value being imputed, for both sexes, and imputing the baseline measurement that way. 

This method, while interpretable, introduces values likely to be decorrelated from the 

patient’s measurement series. It is illustrated in Figure 3-7B. 

3.4.1.5 Multiple-Fixed Linear Regression 

This imputation method performs N local linear regression imputations within an 

individual’s measurement series, where N is the number of observed data points. Each of 

the local regressions is fixed to one of the observed data points and fit to the remaining 

data points. The imputed baseline value is the aggregation (mean) of the imputations 

obtained from each of the N local regressions. The result of this method is illustrated in 

Figure 3-7C. 

 

3.4.2 Analysis 

An analysis was performed to quantify the potential biases that would be introduced by 

each imputation method. Two simulations were performed. Simulation one (interpolation) 

involved randomly dropping from the inner parts of the measurement series. Tests were 

performed for both a single random drop, and a double random drop. Simulation two 
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(extrapolation) involved dropping the baseline measurement of each patient that had an 

observed baseline measurement and at least two other observed data points. Imputation 

was then performed according to the methodology, and predicted values were compared 

against the true observed values using metrics for the mean of the absolute errors (MAE), 

and the root of the mean squared errors (RMSE). Confidence intervals are obtained by 

taking the 2.5 and 97.5 percentiles (95% CI) of 1,000 bootstrap resamples of the results. 

Table 3-3 and Table 3-4 tabulate the performance results for each imputation 

method across a suite of selected laboratory measurements, where either a single drop 

or a double drop was performed, respectively. Table 3-5 tabulates the analysis results 

across baseline imputation methods for the same laboratory measurements. In each table, 

cells are colored according to the relative ranking of the performance result within each 

metric, and within each laboratory measurement. Better results are colored more boldly. 

 Associations in missing baseline variables were assessed using a test for data 

missingness at random (MAR). This test sought to characterize the likelihood of observing 

a missing data point based on the observed values of other variables. The available 

clinical characteristics were included as independent covariates into a logistic regression 

model. Supplementary covariates for time of the year were also included. The dependent 

variable was missingness indicator for the covariate being studied. A second test was 

performed to assess the independence between the missingness in one covariate to all of 

the other covariates. A 𝑋𝑋2 test was performed on a contingency table comparing 

missingness in the covariate being studied to missingness among the other covariates. 

These results are tabulated in Table 3-6. 
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Figure 3-7: Illustration of the three baseline imputation approaches that were considered. Baseline-imputed 
values are colored emerald. The LOCF-filled measurements are colored fuchsia, as before. Panel (A) 
illustrates the next observation carried backward (NOCB) approach. Panels (B) and (C), depict a sex-stratified 
median imputation and a multiple-fixed linear regression imputation, respectively. 
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3.4.3 Discussion 

The results of the imputation analysis generally indicate that in most of the studied cases, 

missing values can be imputed with reasonable accuracy using straightforward imputation 

approaches. For example, the NOCB MAE of 39 µmol/L obtained for baseline imputation 

on creatinine represents a mean absolute error of 11% over the average advanced CKD 

patient at their initial visit to the clinic (350 µmol/L). This represents just a 4% increase 

over the natural intra-day variability experienced by patients in this cohort [71]. 

Overall, the lowest error for the task of extrapolating to baseline (initial visit) was 

achieved using the naïve NOCB approach (Table 3-5). This may be the case for two 

reasons: (1) the sex-stratified median imputed values are decorrelated from the local 

patient data, and (2) the time series data are too noisy and too short on average to benefit 

the multiple linear regression (MFLR) approach. While the NOCB approach statistically 

significantly outperformed both of the other methods, the difference between NOCB and 

MFLR is likely not clinically significant. The same may be said for the interpolation results 

(Table 3-3 and Table 3-4): while time-scaled linear interpolation statistically significantly 

outperformed LOCF in terms of MAE and RMSE, the difference is likely not clinically 

significant (e.g., difference in imputed vs. actual MAE for creatinine equals 10 µmol/L 

between the two studied methods). Given the marginal improvement of linear interpolation 

over LOCF, other considerations were taken into account. For example, LOCF is the only 

of the two approaches that would be applicable to the most recent clinical visit. Therefore, 

LOCF would more closely mimic the imputation process that would be required at the most 

recent patient visit in a prospective clinical setting. 

In summary, the results of this analysis supported the move to include patients 

missing these laboratory measurements in the modeling by using NOCB imputation for 

missing baseline (initial visit) measurements and LOCF for all other imputations. Doing so 



69 

 

 

allowed for the inclusion of those upwards of 18% of patients missing crucial laboratory 

measurements such as uACR, and thus a significant portion of the dataset was retained 

for modeling. 

Table 3-3: Interpolation imputation analysis for selected laboratory measurements (single drop). 

 MAE  
(LOCF) 

RMSE  
(LOCF) 

MAE 
(Linear Interp.) 

RMSE 
(Linear Interp.) N 

Creatinine 43  
(42, 45) 

51  
(49, 52) 

33  
(31, 34) 

38  
(36, 39) 1615 

Urine ACR 74  
(69, 79) 

87  
(81, 92) 

57  
(53, 61) 

66  
(62, 70) 1134 

Calcium 0.10  
(0.09, 0.10) 

0.11  
(0.11, 0.12) 

0.08  
(0.08, 0.08) 

0.09  
(0.09, 0.10) 1582 

Phosphate 0.21  
(0.21, 0.22) 

0.25  
(0.24, 0.26) 

0.18  
(0.18, 0.19) 

0.21  
(0.20, 0.22) 1581 

Albumin 2.93  
(2.84, 3.02) 

3.49  
(3.40, 3.59) 

2.43  
(2.35, 2.50) 

2.80  
(2.72, 2.88) 1575 

Potassium 0.43  
(0.42, 0.44) 

0.50  
(0.49, 0.51) 

0.36  
(0.35, 0.37) 

0.42  
(0.41, 0.43) 1616 

Bicarbonate 2.33  
(2.26, 2.40) 

2.73  
(2.65, 2.80) 

2.01  
(1.94, 2.07) 

2.29  
(2.22, 2.36) 1588 

Abbreviations: MAE, mean of the absolute error; RMSE, root of the mean squared error; urine ACR, urine 
albumin-to-creatinine ratio; Linear Interp., time-scaled linear interpolation; N, number. 
Color: Better results (compared by metric and laboratory measurement) are indicated in dark green cells.  

Table 3-4: Interpolation imputation analysis for selected laboratory measurements (double drop). 

 MAE  
(LOCF) 

RMSE  
(LOCF) 

MAE 
(Linear Interp.) 

RMSE 
(Linear Interp.) N 

Creatinine 48  
(47, 50) 

58  
(56, 60) 

35  
(34, 36) 

41  
(40, 43) 1424 

Urine ACR 77  
(72, 83) 

93  
(87, 99) 

60  
(56, 64) 

71  
(67, 76) 952 

Calcium 0.10  
(0.10, 0.10) 

0.12  
(0.11, 0.12) 

0.08  
(0.08, 0.09) 

0.10  
(0.10, 0.10) 1393 

Phosphate 0.22  
(0.21, 0.22) 

0.26  
(0.25, 0.26) 

0.19  
(0.18, 0.19) 

0.22  
(0.22, 0.23) 1384 

Albumin 3.03  
(2.95, 3.12) 

3.67  
(3.57, 3.77) 

2.49  
(2.42, 2.56) 

2.97  
(2.89, 3.05) 1382 

Potassium 0.44  
(0.43, 0.45) 

0.52  
(0.50, 0.53) 

0.37  
(0.36, 0.38) 

0.44  
(0.43, 0.45) 1424 

Bicarbonate 2.41  
(2.35, 2.48) 

2.88  
(2.81, 2.95) 

2.06  
(2.01, 2.12) 

2.43  
(2.37, 2.49) 1393 

Abbreviations: MAE, mean of the absolute error; RMSE, root of the mean squared error; urine ACR, urine 
albumin-to-creatinine ratio; LOCF, last observation carried forward; Linear Interp., time-scaled linear 
interpolation; N, number. 
Color: Better results (compared by metric and laboratory measurement) are indicated in dark green cells. 
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Table 3-5: Baseline imputation analysis for selected laboratory measurements. Results are mean (95% 
CI). 

 
MAE  
(Sex-

Stratified 
Median) 

RMSE 
(Sex-

Stratified 
Median) 

MAE 
(NOCB) 

RMSE 
(NOCB) 

MAE 
(MFLR) 

RMSE 
(MFLR) N 

Creatinine 70  
(68, 72) 

86  
(83, 90) 

39  
(37, 41) 

54  
(51, 58) 

62  
(58, 65) 

97  
(84, 109) 1611 

Urine ACR 160  
(150, 172) 

243  
(223, 262) 

89  
(82, 96) 

150  
(134, 164) 

129  
(119, 140) 

218  
(200, 236) 1054 

Calcium 
0.11  

(0.10, 
0.11) 

0.14  
(0.14, 
0.15) 

0.10  
(0.09, 
0.10) 

0.13  
(0.12, 
0.14) 

0.12  
(0.11, 
0.12) 

0.18  
(0.16, 
0.21) 

1567 

Phosphate 
0.22  

(0.21, 
0.23) 

0.29  
(0.27, 
0.30) 

0.22  
(0.21, 
0.23) 

0.29  
(0.28, 
0.31) 

0.27  
(0.25, 
0.29) 

0.43  
(0.38, 
0.49) 

1562 

Albumin 
3.99  

(3.83, 
4.16) 

5.20  
(4.98, 
5.41) 

3.58  
(3.45, 
3.73) 

4.62  
(4.43, 
4.84) 

4.24  
(4.06, 
4.43) 

5.65  
(5.35, 
5.97) 

1550 

Potassium 
0.46  

(0.44, 
0.48) 

0.57  
(0.55, 
0.59) 

0.45  
(0.43, 
0.46) 

0.59  
(0.56, 
0.62) 

0.54  
(0.51, 
0.57) 

0.84  
(0.69, 
1.08) 

1609 

Bicarbonate 
2.69  

(2.58, 
2.81) 

3.46  
(3.31, 
3.62) 

2.34  
(2.24, 
2.45) 

3.12 
(2.98, 
3.27) 

2.98  
(2.78, 
3.25) 

5.46  
(3.83, 
7.57) 

1562 

Abbreviations: MAE, mean of the absolute error; RMSE, root of the mean squared error; urine ACR, urine 
albumin-to-creatinine ratio; NOCB, next observation carried backward; MFLR, multi-fixed linear regression; N, 
number; 95% CI, 95% confidence interval. 
Color: Better results (compared by metric and laboratory measurement) are indicated in darker green cells.  

 

Finally, several consequential associations in baseline visit variable missingness 

were uncovered. They are shown in Table 3-6. Most of the missingness was present in 

patients’ uACR samples. As the largest source of missingness in this dataset, this 

potentially represents a major source of bias that ideally will be rectified in downstream 

analyses and the usage of more recent and complete datasets. 
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Table 3-6: P-values for the results of variable missingness analysis. 

 Creat. uACR Calc. Phos. Alb. Potass. Bicarb. Female 
Sex Age Year Quarter 𝑿𝑿𝟐𝟐  N 

Creatinine NA 0.051 0.293 0.258 0.502 0.611 0.062 0.095 0.636 0.002 0.208 0 9 

Urine ACR 0 NA 0.024 0 0.243 0.874 0.028 0.001 0.204 0 0.873 0 317 

Calcium 0.111 0.907 NA 0.280 0.029 0.902 0.608 0.414 0.055 0 0.195 0 48 

Phosphate 0.017 0.692 0.156 NA 0.556 0.389 0.444 0.605 0.109 0 0.121 0 48 

Albumin 0.006 0.395 0.203 0.176 NA 0.449 0.323 0.631 0.431 0 0.088 0 66 

Potassium 0.501 0.376 0.560 0.553 0.198 NA 0.966 0.159 0.534 0 0.336 0 12 

Bicarbonate 0.820 0.039 0.226 0.101 0.399 0.497 NA 0.146 0.118 0 0.307 0 50 

Abbreviations: NA, result is not-applicable; uACR, urine albumin-to-creatinine ratio; creat., creatinine; calc., calcium; phos., phosphate; alb., albumin; potass., 
potassium; bicarb., bicarbonate; 𝑋𝑋2, Chi-Square Test; N, number missing. P-values < 0.05 are bolded. 
Interpretation: Table is read from left-to-right. For example: missingness in creatinine is not associated with elevated urine albumin-to-creatinine ratio to a significant 
degree (p-value = 0.051) based on the MAR test that was conducted.
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3.5 Feature Engineering 

Laboratory measurements play a critical role in the clinical management of many chronic 

conditions, providing valuable insights into disease progression and response to potential 

interventions. As previously mentioned, clinicians monitoring patients with advanced CKD 

prefer to collect multiple laboratory samples at routine and frequent intervals instead of 

relying on only a single set of measurements taken at a patient’s initial visit. This is 

evidenced by the existence of these repeated measurements in the dataset. In clinical 

practice, examining the trends in these series, such as the changes in values over time, 

allows clinicians to make more timely and informed decisions.  

Despite the recognized importance of analyzing trends in laboratory 

measurements in monitoring CKD progression, current kidney failure prediction models 

have not fully incorporated these data. Most prediction models for CKD progression 

primarily rely on baseline measures of kidney function, demographic data, and 

comorbidities [39, 40]. One model, developed by Tangri et al., used repeated laboratory 

measurements to build a time-varying Cox model [72]. This model can dynamically predict 

kidney failure at incremental time horizons using time-updated data. But still, measures of 

change in these laboratory measurements were not accounted for. Similar features to the 

ones that will be described shortly have appeared in tangential research [73, 74]. 

However, these works did not explore whether these features benefited model 

performance. This section of the thesis takes a clear and simplified look at the measures 

of change (or trend features) that were incorporated into the predictive model and their 

impact on performance. 
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3.5.1 Measures of Change 

Several measures of change were developed for the final model that was derived and will 

be presented in Chapter 5. For each laboratory measure included in a model, a suite of 

features was synthesized, each characterizing some intuitive dynamic property of the 

series.  

If 𝑋𝑋 is the set of original feature matrices for the 𝑁𝑁 patients in the dataset, 

𝑋𝑋 = �𝑿𝑿(1),𝑿𝑿(2), … ,𝑿𝑿(𝑁𝑁)� , 

where 

𝑿𝑿(𝑖𝑖) = �
𝑥𝑥1,1

(𝑖𝑖) ⋯ 𝑥𝑥1,𝐽𝐽
(𝑖𝑖)

⋮ ⋱ ⋮
𝑥𝑥𝑘𝑘𝑖𝑖,1

(𝑖𝑖) ⋯ 𝑥𝑥𝑘𝑘𝑖𝑖,𝐽𝐽
(𝑖𝑖)
� . 

Then the matrix for 𝑙𝑙 trend features of the 𝑖𝑖-th individual is 

𝑬𝑬(𝑖𝑖) = �
𝑒𝑒1,1

(𝑖𝑖) ⋯ 𝑒𝑒1,(𝐽𝐽×𝑙𝑙)
(𝑖𝑖)

⋮ ⋱ ⋮
𝑒𝑒𝑘𝑘𝑖𝑖,1

(𝑖𝑖) ⋯ 𝑒𝑒𝑘𝑘𝑖𝑖,(𝐽𝐽×𝑙𝑙)
(𝑖𝑖)

� , 

where 𝑒𝑒𝑘𝑘𝑖𝑖,(𝐽𝐽×𝑙𝑙)
(𝑖𝑖)  is the value of the 𝑙𝑙-th trend feature at the 𝑘𝑘-th timepoint in the patient’s 

time series, computed from the 𝑗𝑗-th feature from the original feature matrix. 

If 𝑙𝑙 represents some specific dynamic property of the 𝑗𝑗-th series of laboratory 

measurements, for example, a moving maximum of a feature 𝑗𝑗, then 

𝒆𝒆max (𝑗𝑗)
(𝑖𝑖)  

is the 𝑘𝑘𝑖𝑖 × 1 feature vector containing the moving maximum of feature 𝑗𝑗 of patient 𝑖𝑖, and 

𝑒𝑒𝑘𝑘,max (𝑗𝑗)
(𝑖𝑖)  

is its value at the 𝑘𝑘-th timepoint. 
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Table 3-7 contains the complete set of features that were incorporated into the models. 

An important property may be observed from the tabulated equations: at each timepoint 

in a series, only information from previous timepoints is incorporated into the calculation 

for the 𝑘𝑘-th value. To incorporate future feature values into the calculation for a past value 

would constitute a data leak and would render the feature unusable in a clinical setting, 

as feature values need to be computed using only the presently available patient data. 

The current formulation for the equations mimics the procedure that would be used to 

compute these features in a real-world deployment setting. 

Table 3-9 tabulates example trend features for a patient’s serum creatinine over 

time. The patient is the same example patient used in the illustrations up to this point. The 

patient had a complete set of creatinine measurements, requiring no imputation. In the 

event of missing data, imputation is performed according to the methods in Section 3.4.1, 

prior to constructing the suite of trend features. Then, at each timepoint 𝑡𝑡𝑘𝑘, 𝑥𝑥𝑘𝑘,𝑗𝑗
(𝑖𝑖) is 

computed and recorded. Note that time is counting down towards the time of event, as 

has been the convention in the figures and annotations used up to this point; the equations 

can be reformulated to accommodate a different time representation. 

 

3.5.2 Analysis 

Analysis of the computed measures of change involved adding them in increments to a 

predictive model and comparing performance at each step. These results are covered in 

Chapter 5.  

The cross-correlation between trend features was analyzed. The results for the 

two laboratory measurements that were eventually included in the final model (Chapter 
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5) are shown in Figure 3-8 A-B. This analysis was performed on all of the follow-up visits 

for all of the patients in the TOH dataset. 

 

Table 3-7: Description of the trend features measuring change in laboratory measurements. 

Description Function 

Maximum and Minimum 

Series maximum.  

Series minimum.  
Change from series 

maximum.  
Change from series 

minimum.  

Change from series 
maximum per unit of 

elapsed time. 

 

Change from series 
minimum per unit of 

elapsed time. 

 

Change from Baseline 

Change from series 
baseline.  

Change from series 
baseline per unit of 

elapsed time. 

 
Tendency 

Series mean. 
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Table 3-7: continued. 

Last-3 visit mean. 
 

 

Recent Rates of Change 

First difference; 
pairwise change; 
velocity between 
two consecutive 

visits. 
 

Mean of the first 
differences; average 

velocity. 

 

Standard deviation 
of the first 

differences; velocity 
dispersion. a 

 

First difference 
between two 
consecutive 
velocities; 

acceleration. 
 

Mean of the first 
differences between 

consecutive 
velocities; average 

acceleration. 
 

a: 1) Standard deviation is computed using 1 degree of freedom (ddof). This is an arbitrary and inconsequential 
decision in the context of these trend features. 2) As with previous trend features that are forced to be imputed 
with zero at baseline, the standard deviation feature starts to be built at 𝑘𝑘 = 2. In other words, the computation 
is always performed on 𝑘𝑘 − 1 time points. The divisor becomes 𝑘𝑘 − 1 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑘𝑘 − 2. 
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Table 3-8: Example of a set of computed features describing change in patient serum creatinine (𝑥𝑥𝑘𝑘,𝑗𝑗
(𝑖𝑖)) at each time point in the patient’s series. 

𝑘𝑘 𝑡𝑡𝑘𝑘 𝑥𝑥𝑘𝑘,𝑗𝑗
(𝑖𝑖) max min Δmax Δmin Δtmax Δtmin Δb Δtb mean mean3 Δtp 

mean 
(Δtp) 

std 
(Δtp) a 

mean 
(a) 

0 42.8 220 220 220 0 0 0.0 0.0 0 0.0 220.0 220.0 0.0 0.0 0.0 0.0 0.0 

1 38.3 280 280 220 0 60 0.0 13.5 60 13.5 250.0 250.0 13.5 13.5 0.0 0.0 0.0 

2 34.6 293 293 220 0 73 0.0 8.9 73 8.9 264.3 264.3 3.5 8.5 7.1 -2.7 -2.7 

3 30.9 327 327 220 0 107 0.0 9.0 107 9.0 280.0 300.0 9.1 8.7 5.0 1.51 -0.6 

4 28.3 252 327 220 -75 32 -29.2 2.2 32 2.2 274.4 290.7 -29.2 -0.8 19.4 -14.9 -5.4 

5 23.0 306 327 220 -21 86 -2.7 4.3 86 4.3 279.7 295.0 10.1 1.4 17.5 7.3 -2.2 

6 17.6 333 333 220 0 113 0.0 4.5 113 4.5 287.2 297.0 5.0 2.0 15.7 -0.9 -1.9 

7 13.2 529 529 220 0 309 0.0 10.4 309 10.4 317.5 389.3 44.2 8.0 21.5 8.8 -0.2 

8 11.8 404 529 220 -125 184 -89.3 5.9 184 5.9 327.1 422.0 -89.3 -4.1 39.7 -95.3 -13.8 

9 9.2 471 529 220 -58 251 -14.6 7.5 251 7.5 341.5 468.0 26.1 -0.8 38.5 45.0 -6.4 

10 5.2 579 579 220 0 359 0.0 9.6 359 9.6 363.1 484.7 27.2 2.0 37.4 0.3 -5.7 

11 2.7 838 838 220 0 618 0.0 15.4 618 15.4 402.7 629.3 100.9 11.0 46.3 28.7 -2.2 

Abbreviations: 𝑘𝑘 denotes the 𝑘𝑘-th visit in the patient series occurring at a time 𝑡𝑡𝑘𝑘 before an event; 𝑥𝑥𝑘𝑘,𝑗𝑗
(𝑖𝑖) is the vector of original feature values (creatinine); each of the 

monikers in the columns that follow represent one of the distinct measures of change defined in Table 3-7. 
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This analysis sought to confirm that each trend feature had the potential to contribute 

additional (independent) information to a model; regardless of whether these trend features would 

actually improve model performance. 

To demonstrate that the trend features were in fact informative of the outcome (kidney 

failure), the sample of patients that experienced kidney failure was analyzed with respect to these 

features. The sample was constructed by taking all the patients who had a kidney failure event 

and at least 6 months of follow-up time. Patient feature values were selected from the first visit as 

of this 6-month baseline (if it existed). The patients were then stratified across the mean value for 

that feature and pooled into a low (L) and a high (H) group. Median survival times in these two 

groups were then compared, as tabulated in Table 3-9 and Table 3-10 for each of the features 

that were ultimately included in the final model. 

 

3.5.3 Discussion 

The correlation analysis revealed that the trend features correlated at varying degrees amongst 

each other, and to the original feature from which the measures were computed. However, most 

features exhibited a Spearman correlation R<0.50. What this indicates is that these features, 

should they be informative of the outcome, may in fact contribute supplementary information to 

the model [75]. On the other hand, some features correlate strongly R>0.9, indicating that they 

may be redundant and not all of them need be added to the model. These trend features include 

the mean and the max of the patient series.  

 Correlation between feature values and the outcome of interest (kidney failure) was 

assessed in Table 3-9 and Table 3-10. The results vary depending on the laboratory 

measurement and the measure of change. Creatinine showed the greatest difference in median 

time to kidney failure between the low and high groups. While not a conclusive statement on the 

potential utility of these features to a model, these indicators (substantial difference in time to  
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Figure 3-8: Correlation (Spearman’s R) between calculated engineered features in (A) creatinine, and (B) urine 
albumin-to-creatinine ratio obtained on the complete dataset.  
 

 



80 

 

 

Table 3-9: Median months before kidney failure event for follow-up visits below (L) feature mean and above (H) 
feature mean (measures of change in serum creatinine).  

Feature 
Mean 

Feature 
Mean (L) 

Feature 
Mean (H) 

Median Months Before 
Kidney Failure (L) 

Months Difference 
(L - H) 

X 365.9 284.9 482.7 19.7 -13.2 
mean3 337.9 272.0 425.7 19.7 -12.9 
mean(a) 2.0 -3.5 14.2 14.3 -4.2 
mean(Δtp) 7.4 0.2 18.9 17.7 -10.5 
mean 332.7 270.0 415.0 19.9 -12.9 
Δb 59.9 8.6 138.0 18.5 -11.9 
Δtb 7.8 1.2 18.5 18.5 -12.0 
a 0.9 -5.6 8.9 14.2 -2.8 
Δmax -12.3 -43.8 -0.8 18.1 -7.3 
Δtmax -3.0 -12.1 -0.2 17.8 -6.5 
max 378.2 299.4 490.1 19.5 -12.8 
Δmin 72.4 26.5 150.3 18.7 -12.7 
Δtmin 10.9 3.9 22.1 18.7 -12.5 
min 293.5 237.8 365 19.2 -11.2 
Δtp 9.4 -2.1 27.5 18.1 -11.0 
std(Δtp) 15.4 6.0 33.0 15.6 -6.5 

 
Table 3-10: Median months before kidney failure event for follow-up visits below (L) feature mean and above (H) 
feature mean (measures of change in urine albumin-to-creatinine ratio).  

Feature 
Mean 

Feature 
Mean (L) 

Feature 
Mean (H) 

Median Months Before 
Kidney Failure (L) 

Months Difference 
(L - H) 

X 233.4 97.7 453.8 15.8 -6.8 
mean3 235.9 103.6 444.4 15.8 -6.9 
mean(a) -2.5 -48.2 4.9 9.2 4.1 
mean(Δtp) -3.9 -26.6 4.6 11.8 1.4 
mean 238.9 105.2 448.0 15.8 -6.9 
Δb -20.1 -152.8 33.5 12.9 0.2 
Δtb -2.8 -20.3 4.4 12.9 0.2 
a 5.0 -2.9 39.8 13.2 -1.7 
Δmax -50.8 -181.8 -4.0 11.5 1.7 
Δtmax -8.1 -30.2 -0.7 11.3 2.0 
max 284.1 124.8 534.3 15.6 -6.7 
Δmin 32.5 1.7 143.8 13.3 -2.7 
Δtmin 6.1 0.4 28.1 13.4 -2.9 
min 200.8 82.7 396.0 15.8 -6.9 
Δtp 1.7 -7.2 34.0 13.1 -0.2 
std(Δtp) 19.7 3.2 63.1 13.9 -3.5 

Abbreviations: L, lower group; H, higher group; each of the monikers in table index represent one of the distinct 
measures of change defined in Table 3-7. 
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kidney failure between the two groups) show that the synthesized features are in fact informative 

of the outcome.  

The remaining results of the feature engineering analysis will be presented in Chapter 5, 

specifically Appendix B.1, Table B-6. It will be shown that the explicit incorporation of the 

described measures of change can in most cases incrementally boost model performance, and 

in cases where the number of available laboratory measurements are reduced, significantly boost  

model performance across several performance metrics. In summary, advanced CKD represents 

a compelling example where the explicit integration of this feature engineering approach into a 

clinical prediction model could significantly improve prediction accuracy, and thus patient-tailored 

care. Such analysis is lacking in the literature, and Chapter 5 provides concrete evidence to 

support their future use in the clinical use case discussed in this thesis. 

 

3.6 Modeling 

The dataset, after the procedures in prior sections have been performed, may be 

diagrammatically illustrated in the manner of Figure 3-9. Survival models, most traditionally the 

Cox regression model, use only baseline covariate data on each patient, 𝑿𝑿1,:
(𝑖𝑖), when estimating 

parameters using the methods described in Section 2.2.5. The traditional Cox regression model, 

time-varying Cox regression model, and a random survival forest are all survival models which 

are compared amongst each other and to a random classification forest in Chapter 4. Both the 

traditional (baseline) Cox regression model and the random survival forest utilize only baseline 

covariate data upon fitting, while the time-varying Cox regression model utilizes the complete set 

of original feature matrices – 𝑿𝑿(𝑖𝑖) for every 𝑖𝑖. When predicting survival probabilities, each of these 

survival models can be applied to each clinic visit, 𝑘𝑘, using the most-recently available feature 

data along with the methods described in Section 2.2.  
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 The random forest classification model in Chapter 5 also makes use of the trend features 

described in Section 3.5, denoted 𝑬𝑬 in Figure 3-9. At a timepoint, 𝑘𝑘, this feature vector is 

computed from the original matrix of features available at timepoint 𝑘𝑘. 

 

Figure 3-9: Illustration of feature pipeline. 

 Each of these feature vectors can represent a separate data instance, or example. In 

simple terms, this example represents an individual patient visit to the clinic nephrologist, with the 

most recently available clinical data anchored to that timepoint. We evaluate each of the models 

described based on their ability to accurately classify those visits that are within 𝑇𝑇 months of a 

kidney failure event, where 𝑇𝑇 is a specified timeframe. Here, and throughout this thesis, kidney 

failure is defined as the initiation of dialysis or kidney transplantation, where the initiation of 

dialysis encompasses both those patients that began in a planned manner, and those that began 

in an unplanned manner. Furthermore, in Chapter 4 and Chapter 5 the specific timeframes that 

are evaluated are 6, 12, and 24 months, with the latter two timeframes being of greatest relevance 

to this clinical problem. 
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3.7 Conclusion 

The Ottawa Hospital’s Multi-Care Kidney Clinic dataset is a unique dataset that offers valuable 

insights into kidney care outcomes and provides the foundation for this thesis. Nevertheless, 

careful consideration of limitations is warranted to allow for a balanced interpretation of the results. 

One important limitation is the absence of datapoints. However, with careful consideration of prior 

clinical data (where it exists) the impact of missing data can be mitigated to a large extent through 

imputations. While, nearly all of the current kidney failure risk prediction models are developed 

and validated to predict longitudinally from the patient’s initial (baseline) visit [9, 40, 67], we 

propose to leverage changes in patient measures over time of follow-up to fine tune the model 

predictions as more data accumulates for the patient. The nature of patient follow-up in this clinic 

provides an opportunity to develop and evaluate a model that can operate dynamically at each 

patient follow-up visit. With methods towards maximizing the quality of existing data, the next 

chapter evaluates several prediction models that can analyze these data.   
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Chapter  4: Comparison of Cox Regression and Machine 

Learning for Short Timeframe Prediction of Kidney Failure 

among Advanced CKD Patients 

4.1 Preamble 

This fourth chapter is a modified copy of the manuscript entitled Short Timeframe Prediction of 

Kidney Failure among Patients with Advanced Chronic Kidney Disease, published in Clinical 

Chemistry, 2023 [In Press]. Modifications were made to improve the flow within the context of this 

thesis. 

 This manuscript compares Cox regression models to machine learning models in the 

prediction of kidney failure at timeframes of 6, 12, and 24 months. This analysis sought to answer 

which out of a reasonable selection of traditional or machine learning models was the best-suited 

and most effective solution to the clinical problem of short timeframe kidney failure prediction.  

 

Authors: Martin M. Klamrowski, Ran Klein, Christopher McCudden, James R. Green, Tim 

Ramsay, Babak Rashidi, Christine A. White, Matthew J. Oliver, Ayub Akbari, and Gregory L. 

Hundemer 

 

Contributions: This article was a collaborative effort between all of the authors listed above. 

MMK set up the experiment, performed all analyses, prepared the first draft, and contributed major 

revisions to the final article. GLH, RK, had a substantial influence on the writing of the introduction 

and discussion sections as well as the overall preparation, presentation, and review of the 

manuscript. CM had a substantial influence on the compilation and writing of supplementary 
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materials. MMK, RK, CM, JRG, TR, BR, CAW, MJO, AA, GLH all contributed substantial machine 

learning, statistical, and/or clinical expertise. 

 

4.2 Methods 

4.2.1 Study Design 

We performed a retrospective cohort study of adults (≥18 years) with advanced CKD referred to 

the Ottawa Hospital Multi-Care Kidney Clinic. We compared the performance of internally-derived 

kidney failure risk prediction models over 6-, 12-, and 24-month timeframes using traditional Cox 

regression models, and machine learning algorithms that incorporated baseline data alone as well 

as time-updated data. Cox regression models included: a) Cox regression using baseline 

variables and b) Cox regression with time-varying variables. Machine learning algorithms 

included: c) random survival forest and d) random forest classifier. 

 

4.2.2 Study Population  

The study population was derived from a database of all patients referred to the clinic from 

January 1, 2010 with follow-up data available through May 31, 2021 as described in Chapter 3. 

Patients were excluded from the study if they were <18 years of age, selected conservative 

management, were lost to follow-up, had missing predictor values, or did not develop kidney 

failure or death and had <24 months of follow-up. The final exclusion criterion was included due 

to inability to label the outcomes for these patients in all studied models.  

The clinical and research activities being reported are consistent with the Principles of the 

Declaration of Helsinki. All protocols were approved by the Ottawa Health Science Network 

Research Ethics Board (Protocol ID #20150457-01H). Informed consent requirements were 

waived due to the retrospective nature of the data. The reporting of this study follows guidelines 
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for transparent reporting of artificial intelligence algorithms in medicine (MI-CLAIM Checklist, 

Supplemental Table A-1) [76]. 

 

4.2.3 Outcomes 

The outcome of interest was kidney failure, defined as dialysis or kidney transplantation. 

Unplanned dialysis was defined as initiating dialysis in the inpatient setting. Planned dialysis was 

defined as initiating dialysis in the outpatient setting or undergoing pre-emptive kidney 

transplantation. 

 

4.2.4 Model Development 

As previously mentioned, we derived and compared the performance of two Cox regression 

models using [a) baseline variables, b) time-varying variables] and two machine learning models 

[c) random survival forest, d) random forest classifier] in the prediction of kidney failure over 6, 

12, and 24 months. We assessed the performance of each model using increasingly larger 

variable sets (Figure 4-1). Algorithm and model details are available in the Supplemental 

Methods (Appendix A.1). 

 

Figure 4-1: Illustration of experiment design. 
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4.2.5 Variables 

Variables included in the study models were selected a priori from variables incorporated in pre-

existing kidney failure risk prediction models including the KFRE, Grams, and VA models [10, 11, 

49, 77]. We used 4-variable, 8-variable, 10-variable, and 13-variable sets within each of our study 

models. The 4-variable set included age, sex, eGFR, and urine albumin-to-creatinine ratio (ACR) 

so as to align with the 4-variable KFRE [10, 49]. The larger variable sets iteratively incorporated 

variables from the aforementioned models (Table 4-1). To characterize each patient visit, variable 

values were assigned based on the closest available measurements, where possible. 

Fitting of baseline Cox and random survival forest models used only the baseline visit 

data, whereas fitting of the time-varying Cox and random forest classifier models used data from 

all visits. All models were validated using the same data – the most recent clinical data at each 

patient visit (as per the intended clinical use of the models). Furthermore, while the time-varying 

Cox and random forest classifier models incorporated updated clinical data into the fitting process, 

none of the models in this study incorporated changes in variable values. That is to say, when 

predicting the probability of kidney failure at each visit, each of the models used only the variable 

values tied to that visit. No historical trends in that patient’s variables were incorporated. 

 

4.2.6 Statistical Analysis to Compare Model Performance 

Each model produced a predicted probability of kidney failure, which was then compared to a 

probability cutoff to classify whether kidney failure is expected or not. Each model was evaluated 

based on its ability to classify whether kidney failure occurred within 6, 12, or 24 months of a clinic 

visit. 

Five-fold cross-validation with stratified cold-patient splits was performed, meaning every 

fold contained a class-balance representative of the overall data, and each fold did not contain 

visits from patients in other folds. Models were compared using metrics of area under the receiver 
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operating characteristic curve (AUC-ROC) and area under the precision-recall curve (AUC-PR) 

to summarize discriminative ability at each probability cutoff. Precision-recall curves plot precision 

versus sensitivity, which provides a better measure of predictive performance in the case of 

imbalanced datasets, such as is the case here (i.e., more visits without outcome event than with 

outcome event within the timeframe in question) [75]. Brier scores were computed to summarize 

model calibration and discrimination. We used the maximum precision obtainable at 70% recall 

(PrRe70) as our main performance metric. PrRe70 can be considered a closer measure of the 

potential clinical impact of the models [78], representing concrete stepwise error rates (false 

positives vs. false negatives) at a meaningful probability cutoff. Performance metrics were 

calculated as the mean value over cross-validation folds, and 95% confidence intervals (CI) were 

obtained from 10,000 bootstrap samples of fold performances. Finally, as an external benchmark, 

the 4-variable KFRE model [10, 49] was evaluated at its intended timeframe of 24 months. 

 

4.2.7 Model Examinations 

We performed two tiers of analyses to examine the machine learning models [76]. Variable 

permutation importance on Brier score was done to gauge model sensitivity when specific 

variables were randomly de-correlated with the outcome variable. Shapley Values [79, 80] were 

computed to summarize the direction and degree of specific variable contributions to model 

output. 

To further examine the behavior of each model type, we plotted a curve representing the 

average predicted probability of kidney failure for all patients who had a kidney failure event at 

each follow-up prior to their dialysis start. We stratified these patients into unplanned and planned 

dialysis.  
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Additional examination insights are implicit in the experiment design (cross-validation, 

increasing number of variables). All analyses were performed in Python (v3.10) using open-

source libraries (Supplemental Table A-2). 

 

4.2.8 External Testing 

The top performing models were tested in two external settings to assess generalizability: 

Kingston General Hospital (Kingston, Ontario, Canada) and University Health Network (Toronto, 

Ontario, Canada). Data from these two sites were combined to create a single external validation 

set. For each of the studied algorithms, we selected the variable set that yielded the highest 12-

month PrRe70 in validation, for succinctness. Final models were trained on the entire Ottawa 

derivation cohort and then tested on the combined external datasets using the performance 

metrics previously described. Data processing and labeling procedures were repeated for these 

external cohorts. Means, 2.5 and 97.5 percentiles were extracted from 1,000 bootstrap resamples 

of the external patient sets. 

 

4.3 Results 

4.3.1 Cohort Description 

From a total of 2,432 consecutive patients with advanced CKD referred to the Ottawa Hospital 

Multi-Care Kidney Clinic, 1,757 met our inclusion criteria. Reasons for exclusion were as follows: 

age <18 years (n=2), conservative management selected by patient (n=117), loss to follow-up 

(n=193), missing predictor values (n=276), and patient did not develop kidney failure or death and 

had <24 months of follow-up (n=87). The baseline characteristics of the study cohort are 

summarized in Table 4-1. Within the study window, 1,204 (69%) of patients developed kidney 

failure, 347 (20%) died prior to kidney failure, and 206 (12%) were still being followed in the clinic. 
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4.3.2 Comparison of Model Performance 

Performance results are tabulated in Table 4-2 for all model types, variable sets, and timeframes. 

In general, performance metrics changed very little by increasing the number of variables included 

in each model beyond the initial 4-variable model. To compare the performance of each model, 

Figure 4-2 displays the performance metrics of the best model (i.e., number of variables) for each 

model type over each timeframe. Compared to the baseline Cox model, the machine learning 

models and time-varying Cox model had higher performance metrics in the 6-month timeframe 

by a statistically significant margin. These trends persisted but were less pronounced in the 12-

month prediction models, not reaching statistical significance (overlapping 95% CI). With the 24-

month prediction models, the performance was similar across all models. 

 

Figure 4-2: Comparison of model performance. (A) Area under receiver-operating characteristic curve (AUC-ROC), 
(B) maximum precision at a recall of 70% (PrRe70), plotted for each model type and timeframe. Performances are 
taken from bolded elements in Table 4-2 representing each model type with the variable set that yielded its highest 
performance based upon PrRe70. 
 

Notably, the random forest classifier showed the highest performance in each timeframe. 

However, as stated above, this difference was greatest at the shortest timeframe (6 months) and 

marginal at the longest timeframe (24 months). AUC-PR scores yielded similar patterns 
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(Supplemental Table A-3). While Brier scores were similar across all models and variable sets 

(in the 0.11-0.21 range), they tended to increase over longer timeframes as class imbalance 

lessened (Supplemental Table A-4). 

 

Table 4-1: Baseline characteristics of derivation cohort (N = 1757). 

Variable Summary 
Statistics Inclusion in Variable Sets 

  4 Variable 8 Variable 10 Variable 13 Variable 
      
Demographics      
Age, Years, Mean (SD) 66 (15) X X X X 
Male Sex, N (%) 1104 (63) X X X X 
      
Laboratory Dataa      

Creatinine, mg/dL, Mean (SD) 3.49 (1.10)     
eGFR, mL/min/1.73m2, Mean 
(SD) 18 (6) X X X X 

Urine Albumin-to-Creatinine 
Ratio, mg/g, Median (IQR) 1450 (424, 2953) X X X X 

Calcium, mg/dL, Mean (SD) 8.94 (0.60)  X X X 
Phosphate, mg/dL, Mean (SD) 4.24 (0.96)  X X X 
Bicarbonate, mEq/L, Mean (SD) 24 (3)  X X X 
Albumin, g/dL, Mean (SD) 3.5 (0.5)  X X X 
Potassium, mEq/L, Mean (SD) 4.5 (0.6)    X 
      
Comorbidities, N (%) 
Diabetes Mellitus 1054 (60)   X X 
Hypertension 1598 (91)   X X 
Congestive Heart Failure 386 (22)    X 
      
Medication Use, N (%) 
ACE Inhibitor/ARB 771 (44)     
Diuretic 1005 (57)     
      
Vital Signs/Anthropometrics 
Systolic Blood Pressure, 
mmHg, Mean (SD) 137 (21)    X 

Diastolic Blood Pressure, 
mmHg, Mean (SD) 72 (13)     

Body Mass Index, kg/m2, Mean 
(SD) 30.0 (7.1)     

Abbreviations: ACE, angiotensin-converting-enzyme; ARB, angiotensin II receptor blocker; eGFR, estimated 
glomerular filtration rate; IQR, interquartile range; N, number; SD, standard deviation. 
a Laboratory data presented in traditional units. Conversion to International System of Units (SI) is as follows: creatinine 
conversion factor (CF) 88.42 to convert to µmol/L; urine albumin-to-creatinine ratio CF 0.113 to convert to mg/mmol; 
calcium CF 0.2495 to convert to mmol/L; phosphate CF 0.3229 to convert to mmol/L; bicarbonate CF 1.0 to convert to 
mmol/L; albumin CF 10.0 to convert to g/L; potassium CF 1.0 to convert to mmol/L. 
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4.3.3 Comparison of 24 Month Model Performance to the Kidney Failure Risk 

Equation 

Our internally-derived 4-variable baseline Cox model had similar performance to that of the 4-

variable KFRE (AUC-ROC 0.85 [95%CI 0.83-0.87] vs. 0.84 [95%CI 0.82-0.86], PrRe70 0.83 

[95%CI 0.80-0.85] vs. 0.82 [95%CI 0.79-0.84]) at the 24-month timeframe within our study cohort. 

 

Table 4-2: Cross-validation performance results of 6-, 12-, and 24-month models across variable sets in derivation 
cohort. 
  6-Month 12-Month 24-Month   

AUC-ROC 
(95% CI) 

PrRe70 
(95% CI) 

AUC-ROC 
(95% CI) 

PrRe70 
(95% CI) 

AUC-ROC 
(95% CI) 

PrRe70 
(95% CI) 

  

C
ox

 B
as

el
in

e 4 Variable 0.85 (0.84, 
0.86) 

0.53 (0.51, 
0.55) 

0.85 (0.84, 
0.87) 

0.71 (0.68, 
0.72) 

0.85 (0.83, 
0.87) 

0.83 (0.80, 
0.85) 

8 Variable 0.85 (0.84, 
0.86) 

0.53 (0.50, 
0.55) 

0.85 (0.84, 
0.86) 

0.70 (0.67, 
0.72) 

0.85 (0.83, 
0.86) 

0.83 (0.81, 
0.85) 

10 Variable 0.85 (0.84, 
0.86) 

0.52 (0.50, 
0.55) 

0.85 (0.83, 
0.86) 

0.70 (0.68, 
0.72) 

0.85 (0.83, 
0.86) 

0.83 (0.81, 
0.85) 

13 Variable 0.85 (0.84, 
0.86) 

0.52 (0.50, 
0.54) 

0.85 (0.84, 
0.86) 

0.69 (0.67, 
0.71) 

0.85 (0.83, 
0.86) 

0.83 (0.80, 
0.85) 

C
ox

 T
im

e-
Va

ry
in

g 4 Variable 0.88 (0.87, 
0.89) 

0.62 (0.60, 
0.64) 

0.86 (0.84, 
0.87) 

0.73 (0.68, 
0.76) 

0.83 (0.81, 
0.84) 

0.81 (0.79, 
0.83) 

8 Variable 0.88 (0.87, 
0.89) 

0.62 (0.59, 
0.65) 

0.86 (0.84, 
0.88) 

0.73 (0.69, 
0.77) 

0.83 (0.82, 
0.84) 

0.81 (0.79, 
0.83) 

10 Variable 0.88 (0.87, 
0.89) 

0.62 (0.59, 
0.64) 

0.86 (0.84, 
0.88) 

0.73 (0.69, 
0.78) 

0.83 (0.81, 
0.84) 

0.81 (0.79, 
0.83) 

13 Variable 0.88 (0.87, 
0.89) 

0.61 (0.58, 
0.65) 

0.86 (0.84, 
0.88) 

0.73 (0.69, 
0.77) 

0.83 (0.81, 
0.84) 

0.81 (0.79, 
0.83) 

R
an

do
m

 
Su

rv
iv

al
 F

or
es

t 4 Variable 0.87 (0.86, 
0.88) 

0.61 (0.57, 
0.64) 

0.86 (0.84, 
0.88) 

0.73 (0.69, 
0.76) 

0.85 (0.83, 
0.86) 

0.82 (0.80, 
0.85) 

8 Variable 0.88 (0.87, 
0.89) 

0.61 (0.58, 
0.63) 

0.87 (0.85, 
0.88) 

0.74 (0.70, 
0.77) 

0.85 (0.83, 
0.87) 

0.83 (0.81, 
0.85) 

10 Variable 0.88 (0.87, 
0.89) 

0.60 (0.57, 
0.63) 

0.87 (0.85, 
0.88) 

0.73 (0.69, 
0.76) 

0.85 (0.83, 
0.87) 

0.84 (0.82, 
0.86) 

13 Variable 0.88 (0.87, 
0.89) 

0.60 (0.56, 
0.63) 

0.87 (0.85, 
0.88) 

0.73 (0.69, 
0.76) 

0.85 (0.83, 
0.87) 

0.83 (0.81, 
0.85) 

R
an

do
m

 F
or

es
t 

C
la

ss
ifi

er
 

4 Variable 0.87 (0.86, 
0.88) 

0.61 (0.58, 
0.64) 

0.86 (0.84, 
0.87) 

0.73 (0.70, 
0.76) 

0.85 (0.83, 
0.86) 

0.83 (0.81, 
0.84) 

8 Variable 0.88 (0.87, 
0.89) 

0.62 (0.59, 
0.65) 

0.87 (0.85, 
0.88) 

0.74 (0.71, 
0.78) 

0.86 (0.84, 
0.87) 

0.84 (0.82, 
0.86) 

10 Variable 0.88 (0.87, 
0.89) 

0.62 (0.59, 
0.65) 

0.87 (0.85, 
0.88) 

0.74 (0.70, 
0.78) 

0.86 (0.84, 
0.87) 

0.84 (0.82, 
0.86) 

13 Variable 0.88 (0.87, 
0.89) 

0.62 (0.59, 
0.64) 

0.87 (0.85, 
0.88) 

0.74 (0.70, 
0.78) 

0.86 (0.84, 
0.87) 

0.84 (0.82, 
0.86) 

Abbreviations: AUC-ROC, area under the receiver operating characteristic curve; CI, confidence interval; PrRe70, 
maximum precision at 70% recall. 
For each model / timeframe pair, the single highest performing model (amongst number of variables) is bolded based 
upon PrRe70. For example, the time-varying Cox model obtained its best 24-month-PrRe70 with 10 variables. The 
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baseline Cox model also obtained its maximal PrRe70 at 24 months with 10 variables. On the other hand, the random 
forest classifier achieved its maximal PrRe70 at 24 months with 13 variables. 

 

Further, the variables most strongly associated with the outcome of kidney failure for all study 

models matched with those incorporated into the well-validated KFRE (Supplemental Tables 

A5-8, Supplemental Figures A1-2) [10, 49]. 

 

4.3.4 Model Examinations 

Shapley analysis revealed machine learning model variable importance was correlated with Cox 

regression hazard-ratios (Supplemental Tables A5-6, Supplemental Figures A1-2). Brier 

permutation scores show the models were heavily reliant on eGFR and urine ACR and were not 

significantly affected by the other included variables (Supplemental Tables A7-8). For the 

unplanned dialysis subgroup, machine learning models were superior on average to Cox models 

throughout the full 6–12-month period prior to kidney failure (Figure 4-3). 

 

Figure 4-3: Predicted kidney failure risk across longitudinal follow-up among randomly sampled patients by study 
model. For each model, the 12-month predictions are plotted for the same 10 randomly sampled planned dialysis 
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patients (purple) and the same 10 randomly sampled unplanned dialysis patients (cyan), obtained over the five-fold 
cross-validation procedure. Each line represents the course of one patient over the study, with individual visits denoted 
by marks. The true positive region is highlighted in gold, representing the approximate interval in which a model should 
“fire” in order to catch patients in need of dialysis in a timely and precise manner. The horizontal dashed line represents 
a 50% probability cutoff threshold. Any marks (visits) above the dashed line and outside the gold region represent false 
positives. Visits under the gold region represent false negatives. A local polynomial regression (LOESS) line of best-fit 
shows the average probability output by the model at each time prior to kidney failure. All planned and unplanned 
patients were used to fit each respective curve for the subgroups. Separate panels are plotted for (A) the Cox baseline 
model, (B) time-varying Cox, (C) the random survival forest, (D) and the random forest classifier. 
 

Table 4-3: External testing performance results of selected models across 6, 12, and 24 month timeframes in 
external validation cohort. 
  6-Month 12-Month 24-Month   

AUC-ROC 
(95% CI) 

PrRe70 
(95% CI) 

AUC-ROC 
(95% CI) 

PrRe70 
(95% CI) 

AUC-ROC 
(95% CI) 

PrRe70 
(95% CI) 

  

C
ox

 
B

as
el

in
e 

4 Variable 0.85 (0.84, 
0.87) 

0.60 (0.56, 
0.65) 

0.86 (0.84, 
0.88) 

0.78 (0.75, 
0.82) 

0.86 (0.84, 
0.88) 

0.88 (0.85, 
0.91) 

C
ox

 T
im

e-
Va

ry
in

g 

8 Variable 0.86 (0.84, 
0.87) 

0.63 (0.59, 
0.67) 

0.84 (0.82, 
0.86) 

0.76 (0.71, 
0.81) 

0.82 (0.79, 
0.84) 

0.82 (0.78, 
0.86) 

R
an

do
m

 
Su

rv
iv

al
 

Fo
re

st
 

8 Variable 0.85 (0.83, 
0.87) 

0.61 (0.57, 
0.65) 

0.84 (0.82, 
0.87) 

0.77 (0.73, 
0.81) 

0.84 (0.81, 
0.86) 

0.85 (0.81, 
0.88) 

R
an

do
m

 
Fo

re
st

 
C

la
ss

ifi
er

 

8 Variable 0.85 (0.84, 
0.87) 

0.64 (0.60, 
0.68) 

0.85 (0.83, 
0.87) 

0.79 (0.74, 
0.83) 

0.85 (0.82, 
0.87) 

0.86 (0.82, 
0.90) 

Abbreviations: AUC-ROC, area under the receiver operating characteristic curve; CI, confidence interval; AUC-PR, 
area under the precision-recall curve; PrRe70, maximum precision at 70% recall. 
The highest performing model at each timeframe (based upon PrRe70) is bolded. 
 

4.3.5 External Testing 

Data from two independent advanced CKD cohorts from Kingston General Hospital (n=493) and 

University Health Network (n=209) were combined to create a single cohort for external validation 

testing (Supplemental Table A-9). External testing performance metrics are tabulated in Table 

4-3 and Supplemental Tables A10-11. No significant decay in performance was observed for 

any of the models. The random forest classifier remained the best performing model at 6 and 12 
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months based upon PrRe70 while the baseline Cox model was the highest performing model at 

24 months (Table 4-3). The random forest classifier was the most probabilistically accurate model 

(Brier score) at the 6- and 12-month timeframes (Supplemental Table A-11). Overall, the trends 

in all metrics did not fluctuate significantly from internal validation results. Increases between 

internal results and external results can be in part attributed to increased positive class prevalence 

in the external test set. 

4.4 Discussion 

To the best of our knowledge, this is the first study to present a model explicitly tied to the clinical 

purpose of preventing unplanned dialysis by predicting short timeframe (6 and 12 months) kidney 

failure risk among patients with advanced CKD using commonly available laboratory and 

demographic data. In this retrospective cohort study of 1,757 consecutive patients with advanced 

CKD, we found that machine learning models outperformed traditional Cox regression models in 

predicting kidney failure risk over these short timeframes. Overall, the random forest classifier 

consistently showed the highest performance at 6- and 12-month timeframes. When the 

timeframe for prediction of kidney failure was extended to 24 months, performance was similar 

across all models. All selected models generalized to two independent external cohorts, indicating 

the potential for their widespread application for short timeframe prediction of kidney failure risk. 

Our primary interest was in predicting kidney failure among patients with advanced CKD 

over shorter timeframes (6 and 12 months) than those for which traditional risk prediction models 

are designed. Shorter-term predictions may be particularly useful in this high-risk population to 

better express the urgency with which the planning for kidney failure (e.g., modality education, 

access creation, and transplant evaluation) must take place, which the traditional 2–5-year 

prediction models fail to fully capture. For example, a retrospective study from the United States 

Renal Data System showed that the optimal timing of arteriovenous fistula (AVF) creation was 6-
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9 months pre-dialysis as this allowed adequate time for access maturation while limiting the 

additional interventional access procedures required to maintain longer-existing AVFs [81]. A 

model tailored to predict kidney failure risk over a shorter time horizon would be better suited to 

match this unmet need. Furthermore, unplanned dialysis remains a major problem with 40-60% 

of CKD patients who progress to kidney failure initiating dialysis in an unplanned fashion [3-5, 8, 

82-88]. Unplanned dialysis is strongly linked to increased patient morbidity and mortality [3], worse 

patient-reported outcome measures such as mental health and quality of life [89], and a heavy 

financial burden to healthcare systems [8].  

Nephrologists’ clinical judgement alone surrounding short-term kidney failure risk has 

previously been shown to have high sensitivity but poor specificity [90]. Despite the existence of 

current kidney failure risk prediction models to augment clinical judgement, the high rates of 

unplanned dialysis suggest an inability of nephrologists to use traditional risk prediction tools to 

reliably identify and prepare patients at high risk for imminent dialysis, even among advanced 

CKD patients followed in specialized nephrology clinics over an extended follow-up period [4, 5, 

82, 86]. This suggests that these traditional models may not be informative when applied at each 

follow-up visit, or may not be directly interpretable in relation to the specific clinical decision of 

whether to prepare a patient for dialysis now or not. Thus, there may be only marginal value added 

with use of these traditional longer timeframe models in communicating the urgency with which 

preparation for dialysis needs to occur as compared to having a model that directly addresses the 

risk for imminent kidney failure. We now demonstrate the superior utility of the machine learning 

models in this regard (Figure 4-3). The curve for the baseline Cox model is flatter than the curves 

for the other models, making the interpretation of risk difficult. Furthermore, the random forest 

classifier’s mean predicted probability for unplanned dialysis patients is higher throughout the 

illustrated 12-month window prior to kidney failure while maintaining similar or better overall 

PrRe70. This means, at a probability cutoff of 50%, out of the unplanned dialysis patients that 
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were followed for at least 6 months, 44% (95%CI 34-53%) were detected in a timely manner 

(predicted risk ≥50% 6-9 months prior their kidney failure) by the random forest classifier model 

as compared to 13% (95%CI 7-20%), 14% (95%CI 7-20), and 27% (95%CI 19-36%) by the 

baseline Cox, time-varying Cox, and random survival forest models, respectively. Associated 

false-positive rates were 0.69, 0.42, 0.72, and 0.69, false-positives for every unplanned dialysis 

patient detected by the random forest classifier, baseline Cox, time-varying Cox, and random 

survival forest models, respectively. This suggests that the random forest classifier may be better 

suited to identify and prevent unplanned dialysis by concretely expressing the urgency with which 

preparation must occur all while maintaining low false-positive rates. 

Importantly, all selected models generalized to two independent external advanced CKD 

cohorts. While differences between selected models generally did not reach statistical 

significance, the principal result from the derivation cohort was preserved (random forest classifier 

performs better than baseline Cox at short timeframes of 6 and 12 months). We emphasize that 

all three cohorts are relatively small by predictive modeling standards, making statistical 

significance more difficult to obtain. Were any model to be released for more widespread use, it 

would undoubtedly have to be trained and tested over multiple centers with tens of thousands of 

patients, as established prediction models have been [10, 11, 91]. Nonetheless, if we appreciate 

the aforementioned considerations around the results in Figure 4-3 in tandem with the random 

forest classifier’s improved PrRe70 and improved probabilistic accuracy at 6 and 12 months over 

the other models both internally and externally, the random forest classifier becomes the best 

model proposition for short timeframe kidney failure risk prediction.  

We acknowledge several limitations within our study. First, these models were derived in 

a single center, which may not account for differences in patient populations and provider practice 

(e.g., timing of dialysis initiation) in other centers. Even at this single institution, data is not 

standardized due to multiple labs employing non-standardized testing, changes in practice over 
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the course of data acquisition, and a large number of clinicians. This emphasizes the ongoing 

need for refinement and standardization of laboratory techniques, including how often lab samples 

are collected for each patient [92]. Second, our external testing sets were relatively small in regard 

to cohort size. While an important evaluative data point, further testing would be required to 

conclusively evaluate external performance. Third, we did not explore feature engineering, data 

augmentation, model tuning, or other machine learning engineering techniques which are likely 

to enhance the prediction ability of machine learning models [75]. However, we want to emphasize 

our intent herein was to evaluate the suitability of several predictive algorithms for predicting 

kidney failure risk over short timeframes using routinely collected clinical laboratory data rather 

than develop a model for more widespread use. Fourth, future studies will be necessary to 

determine the feasibility and cost-effectiveness of implementing these models into routine 

advanced CKD practice. For example, what is the cost-tradeoff between catching more unplanned 

dialysis starts versus preparing some patients for dialysis earlier than may be necessary? Finally, 

in reference to the goal of using short timeframe prediction of kidney failure among advanced 

CKD patients to prevent unplanned dialysis, we acknowledge that rates of unplanned dialysis will 

never be reduced to zero. This is due to the makeup of unplanned dialysis starts including acute 

kidney injury, lack of nephrology referrals, and unwillingness of some patients to see 

nephrologists or participate in the kidney failure preparation process. But given the alarmingly 

high rates of unplanned dialysis (approximately half of all dialysis starts), even modest reductions 

via improved short timeframe kidney failure risk prediction will likely translate into substantial 

benefits to both patients and the healthcare system as a whole. 

In summary, short timeframe kidney failure prediction models that can be used in a time-

updated manner may serve to augment clinical decision-making by accurately identifying patients 

at high risk for imminent dialysis, thereby allowing for optimal pre-emptive intervention. Of the 
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models we examined in this study, the random forest classifier may be best suited for this purpose. 

These findings will inform the development of future kidney failure risk prediction tools.  
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Chapter  5: Derivation and Validation of a Machine Learning 

Model for the Prevention of Unplanned Dialysis among 

Patients with Advanced CKD 

5.1 Preamble 

This fifth chapter is a copy of a manuscript entitled Derivation and Validation of a Machine 

Learning Model for the Prevention of Unplanned Dialysis among Patients with Advanced CKD, 

being prepared for submission to an undetermined venue.  

This article directly builds upon the experiments performed in Chapter 4 by improving 

upon and tuning the best model from those experiments. The incorporation of additional features 

measuring trend (Section 3.5) provided an opportunity to reduce the number of required 

laboratory variables to only the most commonly available ones while achieving better overall 

predictive performance than the 8-variable random forest classifier from Chapter 4. What follows 

is an extensive characterization of this final model by focusing on its external validation, potential 

reduction in unplanned dialysis starts, sensitivity analysis with respect to laboratory 

measurements, and performance across a number of strata. As such, this Chapter 5 represents 

a comprehensive proposal for new short timeframe kidney failure risk prediction models to reduce 

the burden of unplanned dialysis in advanced CKD care centers. 
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5.2 Methods 

5.2.1 Study Design and Populations 

A retrospective cohort study was carried out in three specialized healthcare centers located in 

Ontario, Canada – cohorts dedicated to the specialized treatment of advanced CKD patients. This 

model derivation study focused on these specific populations. Resultant models were built using 

a representative cohort from The Ottawa Hospital Multi-Care Kidney Clinic in Ottawa, Ontario, 

Canada (collection period from 2010 to 2021). Analyses focused on deriving and evaluating the 

models internally, with external validation then being obtained from two other centers in Kingston 

and Toronto (collection periods 2015-2023) (Table 3-2). Reasons for exclusion were as follows: 

age <18 years, conservative management selected by patient, loss to follow-up, and patient did 

not develop kidney failure or death and had <12 months of follow-up. The nature of patient care 

is similar across these centers. At each follow-up visit, patients are provided with a comprehensive 

care package from a team of healthcare professionals. This team typically includes a nurse, a 

dietician, and a nephrologist, who evaluate and address patient needs. Supplementary support 

from a pharmacist and social worker is also available. The frequency of patient follow-ups differs 

among the centers, but, it is typical practice to arrange regular visits every two weeks to six 

months. 

 

5.2.2 Variables 

Independent Variables 

Over the course of each patient’s follow-up, laboratory measurements are drawn at routine 

intervals and then tested at times loosely proximate to the visit times with the clinic MD. We 

anchored observed laboratory values to each clinic MD visit using a forward-fill approach (LOCF), 

as detailed in Section 3.4. For each patient, this yielded a short (in number of timepoints) and 
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irregularly sampled time-series with the most recently available clinical characteristics and 

laboratory measurements tied to each timepoint.  

The collected clinical characteristics included age and sex, as well as several commonly 

obtained laboratory measurements (Table 3-2). Trends and descriptions of change in these 

laboratory measurements provided an opportunity to supply additional variable information and 

predictive power to the models [93-95] (Table B-1). The selected variable set included age, sex, 

serum creatinine, urinary albumin-to-creatinine ratio (uACR), and associated trends and 

descriptions of change in the patient’s repeated measurements, as detailed in Section 3.5. 

The variable missingness rate was generally below 5% for the above stated model 

variables (Table 3-2). For any variables with greater missingness, simple statistical procedures 

to test for associations in the missingness allowed us to characterize any potential biases [69] 

(Table B-2). Imputation of missing variables involved a forward pass and a backward pass 

through each patient series. Imputation on the forward pass involved carrying the last and most-

recently available observation forward (LOCF). Missing baseline variables were backfilled, 

whereby the next observation was carried backwards (NOCB). 

 

Dependent Variables 

Models were built to identify the conditions for imminent kidney failure risk. Kidney failure was 

defined as kidney replacement therapy (KRT), meaning the initiation of dialysis or kidney 

transplantation. Initiation of dialysis encompassed both unplanned dialysis (initiation in the 

inpatient setting), and planned dialysis (initiation in the outpatient setting or undergoing pre-

emptive kidney transplantation). The particularity of our modeling strategy involved labeling 

follow-up visits according to whether they fell within 6 or 12 months of a KRT event. The resultant 

model would thus be conditioning inputs on the identification of kidney failure within 6 or 12 

months of visit to the clinical nephrologist. We assigned visits falling within 6 or 12 months of a 
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KRT event to the positive class. This created a relative class imbalance, which we sought to 

mitigate using class weighting. Each class was weighted by the inverse of its prevalence.  

 

5.2.3 Statistical Analyses 

Modeling 

Random decision forest classification algorithms were used [63, 96]. These supervised learners 

would take as input the aforementioned independent variables and attempt to assign to each 

follow-up visit a probability of membership to the defined positive class (KRT within 6 or 12 

months). We built two models – one with a 6-month prediction timeframe, and a second with a 

12-month prediction timeframe. Optimal model hyperparameters were exhaustively evaluated by 

grid-searching a set of predefined options (Table B-3) [61]. 

 

Experiment Design 

Internal training and calibration data were split 90% and 10%, respectively. Internal performance 

evaluations were obtained over 5-fold cross-validation procedures [75, 97]. Patient sets across 

the folds were ensured to be disjoint, and class ratios within each fold were ensured to be 

representative of the original data. The final models were trained on the 90% partition, calibrated 

on the 10% partition, and then externally validated on the complete external dataset comprised 

of the two external cohorts. Both internally (cross-validation) and externally (test), patient sets and 

associated predictions were bootstrapped with 1,000 repetitions to obtain distributions around 

summative statistics. Unless otherwise noted, confidence intervals (CI) throughout the reported 

analyses represent the 2.5 and 97.5 percentiles (95% CI) over the results of these bootstrapped 

patient sets. 
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Discrimination 

Discrimination metrics included area under the receiver operating characteristic curve (AUC-

ROC) and area under the precision-recall curve (AUC-PR) to summarize discriminative ability at 

each cut-off threshold. Precision-recall (PR) curves plot the precision versus the sensitivity to 

identifying the positive label, which are informative measures of predictive performance in the 

case of imbalanced datasets, such as is the case here (i.e., more visits without outcome event 

than with outcome event within the 6- or 12-month timeframe) [75]. 

 

Calibration 

Calibration plots were obtained in both the derivation and validation cohorts. Predictions were 

grouped by quintiles. Brier scores were computed to summarize the accuracy of the model’s 

probabilistic predictions. In classification contexts, the Brier score is an important measure of 

overall calibration and probabilistic accuracy [98].  

 

Impact Measures 

As in [73, 74], histograms illustrating the cumulative number of alerts delivered to the primary 

patient group of interest here-to give an indication of the potential clinical impact of the proposed 

models. The histogram illustrates the cumulative number of unplanned dialysis patients for whom 

an alert was triggered (imminent kidney failure risk detected), and when it first occurred in their 

observation period. The reported values should be considered in the context of current clinical 

performance: 0% detection of unplanned dialysis.  

It is important to note that a naïve model predicting 100% kidney failure risk at every 

timepoint would be perfectly sensitive and deliver alerts to 100% of unplanned dialysis patients. 

Therefore, fundamental to the formulation of these detection histograms is a counterbalancing 

measure of precision. A good approach is to take the number of alerts delivered by the models 
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when operating at specific stepwise precisions [73, 74]. We chose values of 60%, 70%, and 80% 

based on the performance of our models in our previous study and determined the associated 

probability cutoff from internal cohort performance. 

 

Sensitivity Analysis 

Three sensitivity analyses were performed on the final derived models. Monte Carlo sampling of 

input features was done to quantify the prediction uncertainty that arises from the natural 

variability of the laboratory measurements, such as intraday fluctuations in laboratory values. 

1,000 samples were generated for each patient visit by applying a noise factor. The noise factor 

was randomly sampled from a normal distribution with mean zero and standard deviation v. We 

defined v as the day-to-day variability. We apply a uniform day-to-day variability of 11.3% to the 

albumin-to-creatinine ratio, and 6.6% to serum creatinine throughout the Monte Carlo simulations 

[71]. Second, external validation within independent test cohorts enabled concrete assessment 

of the validity of the internal cohort results. Finally, SHAP analysis was performed to determine 

the contribution of trend variables included into the models.  

Table B-4 contains the Python libraries used to perform all analyses. 

 

5.2.4 Ethics 

The clinical and research activities being reported are consistent with the Principles of the 

Declaration of Helsinki. All protocols were approved by the Ottawa Health Science Network 

Research Ethics Board (Protocol ID #20150457-01H). Informed consent requirements were 

waived due to the retrospective nature of the data. The funding agency played no role in the 

design, findings, interpretation, or write-up of this study. Our reporting follows guidelines for 

transparent reporting of artificial intelligence algorithms in medicine (MI-CLAIM Checklist, Table 

B-5). 
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5.3 Results 

5.3.1 Study Populations 

The baseline population characteristics and outcomes are summarized in Table 3-2. The internal 

derivation cohort included 1,849 consecutive patients with advanced CKD referred to the Ottawa 

Hospital (TOH) Multi-Care Kidney Clinic. Two external cohorts of advanced CKD patients were 

obtained from the Kingston General Hospital (KGH), in Kingston, Ontario, Canada, and the 

University Health Network (UHN), in Toronto, Ontario, Canada. The external cohorts comprised 

1,033 and 323 individuals, respectively. Patients’ CKD was the most advanced in the TOH cohort, 

with mean eGFR (SD) equal to 19 (7) mL/min/1.73m2, compared to 21 (7) mL/min/1.73m2 and 23 

(8) mL/min/1.73m2 for KGH and UHN, respectively. In turn, for the external cohorts this yielded a 

higher number of patients still being followed at the time of data collection, with 363 (35%) and 

182 (56%) patients in KGH and UHN, respectively, vs. 281 (15%) at TOH. The number of patients 

experiencing kidney failure was also greater in TOH than in the external KGH and UHN cohorts 

– 1,203 (65%) vs. 471 (46%) and 93 (29%). As was the incidence of unplanned dialysis – 435 

(39%) vs. 161 (35%) and 22 (26%). 

 

5.3.2 Internal Performance 

Internal performance metrics are tabulated in Table 5-1. Performance metrics were studied 

across several models incorporating different input variables (Table B6-7). Supplemental Tables 

B8-9 show the performance stratified among subgroups for sex and age quintile. Calibration 

figures are presented in Figure 5-1, panels A-D.  
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The 6-month model achieved an AUC-ROC of 0.878 (95% CI: 0.871 - 0.885), an AUC-PR 

of 0.689 (95% CI: 0.672 - 0.706), and a Brier score of 0.099 (95% CI: 0.095 – 0.103). 6-month 

internal calibration is illustrated in Figure 5-1, panel A.  

The 12-month model achieved an AUC-ROC of 0.863 (95% CI: 0.856 - 0.871), an AUC-

PR of 0.778 (95% CI: 0.764 - 0.794), and a Brier score of 0.138 (95% CI: 0.133 – 0.142), internally. 

Internal calibration for the 12-month model is illustrated in Figure 5-1, panel C. 

The inclusion of features measuring time-varying trends in laboratory measurements 

generally improved performance. The performance increase was most substantial with fewer 

base laboratory measurements, and negligible with the larger 8-variable laboratory sets. The 6-

month model benefited the most from the inclusion of these time-varying trends based upon the 

relative performance increases within laboratory sets (Table B-6). 

Performance values shifted with increasing age: discrimination metrics (AUC-PR, AUC-

ROC) appeared to worsen, while metrics driven by the prevalence of the majority class (Brier) 

appeared to improve (Tables B8-9). 

 

Table 5-1: Model performance metrics. 

 Internal  External Validation 

 6-Month Model 12-Month Model 6-Month Model 12-Month Model 

Brier Score  
(95% CI) 0.099 (0.095, 0.103) 0.138 (0.133, 0.142) 0.092 (0.086, 0.097) 0.131 (0.124, 0.137) 

AUC-ROC Score 
(95% CI) 0.878 (0.871, 0.885) 0.863 (0.856, 0.871) 0.872 (0.862, 0.882) 0.868 (0.856, 0.880) 

AUC-PR Score 
(95% CI) 0.689 (0.672, 0.706) 0.778 (0.764, 0.794) * 0.557 (0.521, 

0.589) 0.752 (0.727, 0.779) 

Abbreviations: AUC-ROC, area under the receiver operating characteristic curve; AUC-PR, area under the precision-
recall curve; CI, confidence interval. 
*: Significantly different from internal result, based upon overlapping 95% confidence intervals.  
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Figure 5-1: Calibration curves for the 6-month model internally (A) and upon external validation (B), and the 12-month 
model internally (C) and upon external validation (D). Min-max-normalized histograms representing the distribution of 
model predictions is illustrated at the bottom of the figure, with visits falling within 6 or 12 months of a KRT event (1) 
displayed above, and visits falling outside 6 or 12 months of a KRT event (0) displayed below. Throughout each model 
training procedure, training was performed on 90% of the training partition, with the remaining 10% being used for 
model calibration. 
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5.3.3 External Validation 

External validation results for both models are available in Table 5-1. Stratified analyses across 

a sex and age subgroups in the external validation cohorts are presented in supplemental Tables 

B10-11. The 6-month model produced a significantly lower AUC-PR in the external validation set 

compared to the internal validation set (0.557 [95% CI: 0.521 – 0.589] vs. 0.689 [0.672, 0.706]). 

Differences between internal and external results were otherwise not significant based upon 

overlapping 95% confidence intervals. 6-month and 12-month model calibrations in the external 

cohorts are illustrated in Figure 5-1, panel B and Figure 5-1, panel D, respectively. 

 

5.3.4 Impact Measures 

Internal impact results for the models are comprehensively presented in supplemental Tables 

B12-13 (6-month and 12-month, internal), and Tables B14-15 (6-month and 12-month, external). 

The 12-month model delivered timely alerts to 30.6% (95% CI: 26.1% - 35.2%), 48.1% (95% CI: 

43.4% - 52.9%), 64.4% (95% CI: 59.9% - 69.0%) of all unplanned dialysis patients, with stepwise 

precisions of 80%, 70%, and 60%, respectively, at least 3 months prior to their dialysis event 

(Figure 5-2). At the stricter timeframe of 6 months, for the same stepwise precisions, alerts were 

delivered for 9.7% (95% CI: 7.2% - 12.5%), 20.1% (95% CI: 16.5% - 23.9%), 31.8% (95% CI: 

27.4% - 36.1%) of all unplanned dialysis patients respectively. These results persisted upon 

external validation (no significant difference based upon overlapping 95% CIs). The confusion 

tables for the 6- and 12-month models at probability cutoffs representing a stepwise precision of 

70%, as determined from internal validation, are available in Table B-16. 
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Figure 5-2: For the 12-month model, illustration of the latency between prediction and outcome for those patients that 
began dialysis in an unplanned manner in the external validation cohorts [74]. The figure only contains unplanned 
dialysis patients to demonstrate that the model is able to deliver alerts on this challenging subgroup. As such, only 
positives (dialysis) are represented in this figure. As a measure to counterbalance this, stepwise precisions of 80%, 
70%, and 60% are illustrated in each bar cluster to demonstrate how model sensitivity to this subgroup varies. 
Overhanging bars indicate when unplanned dialysis patients first presented to the clinic. E.g., 50% presented with 15 
months or more latency before their outcome. 3-bar clusters underneath plot the cumulative percentage of unplanned 
dialysis patients predicted with >=X months latency to the outcome (or advanced notice). 
 

5.3.5 Sensitivity analyses 

Prediction variability remained under 5% for the majority of cases in both the 6- and 12-month 

model, as evaluated on the external validation set (Figure B-3, panels A-B). A correlation 

between the standard deviation over Monte Carlo prediction iterations was uncovered, in that the 

closer the prediction was to 0% or 100%, the less the predicted probability was perturbed by noise 

in the input variables. Further study of this relationship is available in supplemental Figure B-2 

and indicated this uncertainty region was associated with a creatinine range of 350-400 µmol/L 

for the 6-month model, and 300-350 µmol/L for the 12-month model. SHAP summary plots are 

available in supplemental Figures B4-5. 
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5.4 Discussion 

In this study, machine learning models were derived to predict kidney failure at short timeframes 

of 6 and 12 months. The potential for significantly reducing the incidence of unplanned dialysis 

starts in advanced CKD in three independent advanced CKD cohorts in Ontario, Canada, was 

evidenced, thereby suggesting the possibility for substantial positive impact on patient lives and 

provider practice. 

The intended goal of these models is to provide decision aid to nephrologists operating in 

advanced CKD clinics by providing kidney failure alerts in the hope that these alerts may facilitate 

timely remediation of risk factors for initiating dialysis in an unplanned fashion. The nature of this 

clinical challenge yields itself to predictive modeling, whereby a patient's immediate or future risk 

of kidney failure is estimated using statistical algorithms. While there have been numerous kidney 

failure risk prediction models developed and implemented over the past decade [9-12], the rate 

of unplanned dialysis starts remains persistently high. These models are decoupled from the 

problem for two reasons. Firstly, they predict over longer timeframes of 2-5 years, when dialysis 

preparation should preferably occur 6-9 months prior to dialysis initiation [13]. Second, they are 

single-timepoint models, derived for more general CKD populations where repeated measures 

can be more difficult to obtain. A model tailored for prediction in advanced CKD settings would be 

dynamic and would predict at routine time intervals, similar to the manner and style of patient 

assessment in specialized CKD clinics. Altogether, this suggests that what may be lacking in 

advanced CKD practice, is a model that is concretely tied to the described clinical question: must 

the patient be prepared for dialysis now, or not. I.e., will the patient’s kidneys fail in the next 6-9 

months? Our derived models directly tie into this specific clinical question, providing short 

timeframe (6 and 12 months) risk updates at any timepoint in a patient’s observation period. 

Our results indicate that the investigated models could provide significant clinical benefit 

in this regard. From the example in Figure 5-2, it is demonstrated that the model can deliver 
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timely alerts with high precision to a substantial proportion of unplanned dialysis patients – 20% - 

40% – at least 6 months prior to when they started dialysis. The alerts delivered by the models 

concretely express the need for dialysis at short timeframes so that patients may be prepared for 

and informed about treatments such as hemodialysis, peritoneal dialysis, kidney transplantation, 

and conservative management. In general, preparation should occur a few months in advance 

[99], and studies have shown there is on average no benefit to starting earlier than 6 months 

[100]. Still, these timeframes will vary from center-to-center meaning that even within our own 

practice where patients are routinely prepared with 6 months or less time before their dialysis 

start, cost-benefit analyses will be required to determine optimal treatment pathways at each of 

the operating points studied. Additionally, given the retrospective nature of this study, we could 

only evaluate this under idealistic assumptions by simulating when an alert would be delivered for 

each of the unplanned dialysis patients in our retrospective external cohorts. Therefore, while we 

hypothesize that these models could help mitigate risks associated with unplanned dialysis 

initiation by improving patient understanding and facilitating optimal decision-making in the clinical 

setting [4-6, 8], further analysis is required to determine their true clinical applicability.  

We highlight the performance of the models across several identifiable subgroups (Tables 

B8-11). This was of paramount importance to the characterization of our models. A previous 

landmark machine learning study into the continuous-time prediction of AKI reported greatly 

improved predictive performance on the Veteran Affairs database [73], a predominantly male 

population. When one of the models was replicated and applied to a more diverse cohort, 

significant biases were uncovered [101]. This highlights the importance of deriving models in 

cohorts that are representative of the target population. All three cohorts studied here, while 

having their differences, are broadly representative of advanced CKD centers in Ontario, Canada. 

We show that our models validate throughout, and do not perform unexpectedly in the identifiable 

groups studied. We attribute the decreasing performance in elevated age quintiles to the rising 
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competing risk of death in these age groups [47, 102, 103], and a decreasing positive class 

prevalence. Additionally, each of the three studied cohorts have notable discrepancies in positive 

class prevalence between each other. This fact represents an important consideration when 

interpreting our reported model performances across centers. 

Our models are not without limitations. Developed in a single-center setting, broader 

variation in patient demographics and healthcare practice, such as the timing of dialysis initiation, 

may not be accounted for. External validation results were promising, but the cohorts were 

comparatively small, and additional validation will be necessary to ensure the models' general 

applicability. Future research will be crucial to assess the feasibility and cost-effectiveness of 

integrating these models into regular advanced CKD practice. A critical question will be the cost-

benefit analysis of pre-empting more unplanned dialysis initiations versus potentially initiating 

dialysis preparations earlier than required for some patients. Moreover, while our objective would 

be to completely eliminate the occurrence of unplanned dialysis among advanced CKD patients 

through short timeframe kidney failure risk prediction, we realize that this will not be possible. 

Factors contributing to unplanned dialysis, such as acute kidney injury, lack of nephrology 

referrals, and some patients' reluctance to consult nephrologists or partake in the kidney failure 

preparation process are beyond the scope of our model. However, considering the considerable 

room for improvement (around half of all dialysis initiations), even a modest reduction through 

improved kidney failure risk prediction could yield significant benefits for both patients and the 

healthcare system at large. 
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Chapter  6: Conclusions 

Here, the contributions presented in this thesis are summarized. The research and work outlined 

here represents several marked contributions to the field of kidney failure prediction. Several new 

insights are offered. And a novel approach is proposed to address this difficult yet crucial clinical 

problem. The following sections highlight the key findings and areas for future exploration. 

 

6.1 Summary of Contributions 

1. One of the principal contributions of this thesis includes a thorough analysis of the 

extracted clinical dataset followed by the implementation of several transformative 

procedures. This encompassed a complete cleaning of the dataset, an examination of 

variable missingness, an imputation analysis, and the uncovering of latent features within 

the dataset. This portion of the thesis therefore provides a statement of the quality and 

consistency of the dataset but also unveils concealed insights that enhance the overall 

comprehension of its intricacies. Such findings may inform the downstream 

implementation of automated clinical data pipelines in the advanced CKD clinic. 

2. On this note, the thesis identified a feature engineering approach (introduced in Chapter 

3 and studied in Chapter 3 and Chapter 5) to explicitly incorporate representations of 

clinician decision-making processes into the predictive models via a synthesized set of 

features measuring time-varying trends in laboratory measurements. It was shown that 

these features augment the predictive accuracy of the models, especially in reduced 

variable settings. The significant performance boost afforded to a sex, age, and creatinine-

only model upon the incorporation of measures of change in creatinine is a particularly 

exciting finding given the wide availability of these patient data. These techniques may 
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maximize the accessibility of the proposed clinical tools by providing improved risk 

assessment in reduced-variable settings. 

3. Chapter 4 introduced four new predictive models designed explicitly for the novel clinical 

prediction task of short-term kidney failure (6-12 months) among patients with advanced 

CKD. These models represent an advancement in the field, as there were no existing 

prediction models tailored to this clinical problem. By concretely tying the models proposed 

here to the clinical question at hand, they exhibit improved accuracy and suitability for 

predicting kidney failure within this critical time window. Moreover, the comparison 

between machine learning approaches and traditional methods demonstrated the 

superiority of the former. This finding may inform the development of future kidney failure 

prediction models. 

4. Chapter 5 extensively characterized and validated the best model from Chapter 4, 

ensuring its applicability and potential for mitigating the burden of unplanned dialysis in 

advanced CKD clinics across Ontario. This chapter therefore represents a comprehensive 

proposal for new short timeframe kidney failure risk prediction models to address this 

important clinical problem. Importantly, the results of this retrospective analysis provide a 

strong indication that upwards of 30% of unplanned dialysis starts could be changed to 

planned (optimal) dialysis starts. If this potential reduction in suboptimal starts were to 

carry over into a clinical implementation, the real-world positive impact to both patients 

and providers would be substantial. 
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6.2 Limitations 

6.2.1 Dataset 

Despite the promise of these models, the dataset used in this study poses certain limitations that 

deserves further attention in future research. One critical limitation is the presence of variable 

confounding, specifically regarding urine albumin-to-creatinine ratio (uACR). The incorporation of 

additional relevant clinical predictors such as medication use may help address this confounding 

issue and improve the models' accuracy and reliability. In the future, deep learning and larger 

datasets could enable deep learning analyses for phenotyping patients into meaningful drug-

response classes. Such information could serve as a clinical aid or as input features into a future 

model. Finally, the dataset's fluctuating times, compounded by external factors like the COVID-

19 pandemic, present challenges to model stability and generalizability. To mitigate this, once 

again it will be crucial to consider larger datasets and periodic retraining of the models. This 

ensures that the predictive models remain up-to-date and relevant in dynamic clinical 

environments. 

 

6.2.2 Outcomes 

Another limitation lies in the lack of standardized outcome definitions, in that it is difficult to unify 

all of the patients that should be flagged for dialysis under a clear and marked endpoint. The 

endpoints used in this thesis correspond to the endpoints traditionally used in kidney failure 

prediction research – the time of dialysis initiation [9, 40, 67, 68]. However, the initiation of dialysis 

and its indicated time for one patient does not necessarily represent the same thing as the 

initiation of dialysis in another patient. This is true for patients beginning dialysis in a planned 

manner, and it is especially true for patients beginning dialysis in an unplanned manner. The 

timing of dialysis is variable, and is contingent upon the clinician’s decision to intervene, the 
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patient’s willingness and availability to start treatment, the clinics scheduling, and potentially other 

factors such as age and comorbidities [14]. Many patients on a trajectory to initiating dialysis in a 

planned manner only do so once their eGFR levels drop to 8 or even 5 mL/min/1.73m2 – well-

below the KDIGO classification for kidney failure. It is not ideal to condition a model on this kind 

of ambiguity. Recently, composite outcomes of dialysis initiation plus eGFR decline are being 

incorporated into predictive models and clinical trials [48, 104, 105], where the endpoint is taken 

to have occurred at the first of the two. Such an endpoint is still not ideal. An eGFR decline 

endpoint can easily change for a patient based on the timing and frequency of follow-up and 

fluctuations in laboratory measurements. eGFR decline may also be ill-suited for older CKD 

populations where the incidence of death before dialysis is greatly elevated [104]. Future research 

efforts will therefore have to be dedicated to enhancing the consistency of the labels on which the 

model will be conditioned to ensure applicability across different studies and healthcare 

institutions. 

 

6.2.3 Feature Engineering 

The feature engineering approach, while showing promise, has its limitations. Notably, the current 

implementation involves 0-imputation at initial and potentially second visits. This approach is 

relatively naive and should be further refined to improve model performance. The boost to a 

creatinine-only model was significant, but performance tapered off with the inclusion of more 

laboratory measures. This phenomenon should be further studied. Improving the quality of the 

repeated measures of uACR may benefit in this regard. 
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6.3 Recommendations for Future Work 

As the predictive models have shown promise and effectiveness in external clinical sites, 

conducting further external validation on a provincial and international scale will provide additional 

evidence of their utility and performance across diverse healthcare settings. Additionally, 

continuous refinement and improvement of the models will be essential to ensure they remain up-

to-date and effective. By incorporating feedback from clinicians and healthcare practitioners, 

iterative model updates can be developed, enhancing their real-world performance.  

Integrating predictive models into clinical practice requires a thorough cost-effectiveness 

analysis. This analysis should encompass various aspects, including the number of unplanned 

starts of kidney failure prevented, the competing risk of death, and the potential impact the models 

would have on patient quality of life. By quantifying the economic implications of implementing 

these models, healthcare decision-makers can make informed choices about their adoption and 

potential benefits. Furthermore, the cost-effectiveness analysis can help identify specific patient 

populations that would benefit most from the predictive models, allowing for targeted and efficient 

implementation in areas with the highest potential impact.  

The growing focus on patient engagement in advanced CKD care highlights the need for 

patient-centered interventions. Developing software systems that leverage machine learning-

driven decision support can educate and empower patients to take a more active role in managing 

their condition. By providing patients with personalized information and treatment 

recommendations based on the predictive models, these software systems can foster shared 

decision-making between patients and healthcare providers. This collaborative approach can lead 

to better treatment adherence, improved patient outcomes, and enhanced patient satisfaction. 

Moreover, the software systems can serve as educational tools, delivering relevant information to 

patients about their condition, treatment options, and lifestyle modifications. By enabling patients 
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to make informed decisions, these systems can contribute to better self-management and overall 

well-being.  

Perhaps, no less significantly, the lessons learnt in this work and methods develop, may 

apply to any number of other clinical scenarios in which patients are monitored sparsely for 

disease progression. Thus, this work has the potential for far reaching impact in fields such as 

oncology, cardiology, and autoimmune diseases. 

In conclusion, this thesis has contributed to the field of kidney failure prediction by 

introducing new predictive models and data modeling approaches for short timeframe prediction 

of kidney failure in advanced CKD contexts. The identified limitations open avenues for future 

research and improvement, aiming to address dataset challenges and refine feature engineering 

methodologies. Overall, this thesis sets the stage for further advancements in predictive modeling 

and patient care in the field of nephrology. With continued research and collaboration between 

academia, healthcare professionals, and patients, the potential to make a meaningful impact on 

CKD management is within reach.   
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Appendices 

Appendix A  Chapter 4 Supplemental Material 

A.1 Supplemental Methods 

Variables 

Variables were included in alignment with several validated kidney failure risk prediction models. 

Using the 4-variable Kidney Failure Risk Equation (KFRE) [10, 49] as a baseline, we defined the 

4-variable set to include age, sex, eGFR, and urine albumin-to-creatinine ratio (ACR). The 8-

variable set additionally included serum calcium, phosphate, bicarbonate, and albumin to align 

with the 8-variable KFRE [10, 49]. The 10-variable set additionally included a history of diabetes 

mellitus and/or hypertension as used by the 6-variable KFRE [10]. The 13-variable set additionally 

included variables shown in the Veteran Affairs (VA) Model Study [12] to be predictive in an older 

and advanced CKD population, namely serum potassium, a history of congestive heart failure, 

and systolic blood pressure. Inclusion of variables in each model is summarized in Table 3-2. 

To simulate how missing variables would have to be filled in a prospective clinical setting, 

we forward-filled any missing values using available measurements from prior visits. No 

transformations were applied to any variables, except mean-centering in the case of Cox 

regression modeling. 

Data from January 2010 through November 2019 were generated from the Siemens 

Dimension Vista chemistry analyzer. Data from November 2019 through 31 May 2021 were 

generated using the Roche Cobas. All data were from routine physician-ordered testing in an 

Accreditation Canada Diagnostics accredited clinical laboratory where minimum performance 

standards were met or exceeded (e.g., analytical precision, linearity, analytical specificity). 

Creatinine methods were enzymatic on both platforms and showed excellent agreement 

(Passing-Bablock regression slope = 0.98 with an intercept of 6.3 µmol/L [0.07 mg/dL]). Urine 
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albumin, calcium, and phosphate also showed excellent agreement between methods (high R2 

and slope >0.98). Bicarbonate (total carbon dioxide) showed an absolute difference of 1.67 mEq/L 

(+/- 1.75, 2SD) where the Roche method runs lower than the Siemens. Albumin (plasma) showed 

an absolute difference of 0.4 g/dL (+/- 0.4, 2SD) where the Roche (BCG) method runs higher than 

the Siemens (BCP). eGFR was calculated using the 2021 equation, which does not include a race 

component [106]. Of the included 1,757 patients, 1,706 had measurements between January 

2010 and November 2019. 209 patients had measurements between November 2019 and 31 

May 2021. 166 patients had measurements in both periods.  

 

Outcomes 

The outcome of interest was kidney failure over short timeframes. We assigned a binary label to 

each visit. Visits labeled as the positive class were visits that were within 6, 12, 24 months of a 

kidney failure event (‘kidney failure within X-months’), depending on the timeframe. Visits not 

falling within X-months of kidney failure, or visits for patients who died before kidney failure, were 

labeled as the negative class (i.e., ‘no kidney failure within X-months’). The precise class counts 

(positive [outcome event within timeframe]:negative [outcome event not within timeframe]) for 

each of the 6-, 12-, and 24-month datasets were 2562:9231, 4265:7528, and 6330:5463 

respectively. For Cox regression fitting, death was a censoring event. 

 

Baseline Cox Regression 

As a baseline for this study, we re-implemented the traditional Cox regression methodology 

employed by the widely-used KFRE and other modern-day kidney failure risk prediction models 

[9]. The model was fit using the baseline measurements of each patient obtained at their initial 

clinic visit. Predicted survivor curves were obtained at each visit using the most recent clinical 



122 

 

 

data. That is, the Cox model was reapplied at each subsequent patient visit, and kidney failure 

probabilities were extracted at 6-, 12-, 24-month time points.  

While traditionally a method for quantifying the effects of variables on hazard, baseline 

Cox regression (e.g., KFRE) has notably become the most widely used type of kidney failure risk 

prediction model in modern-day clinical practice. For this study, baseline Cox models were 

constructed using variable values collected at a patient’s initial clinic visit. Though not required, 

we centered continuous variables using observed sample means for those variables to facilitate 

comparison of hazard ratios with KFRE (Table B-5). As such, the baseline hazard represented a 

male with no comorbidities, and mean values across all other variables [51]. The cumulative 

baseline hazard was estimated using the Breslow method from which an estimate of the baseline 

survivor function (𝑆̌𝑆0(𝑡𝑡)) could be obtained [51, 52]. A predicted survivor curve can then be 

obtained using the fitted Cox model, representing a longitudinal continuous-time estimation of 

survival probability for that individual. Individual survival curves were predicted as 

 𝑆̌𝑆𝑖𝑖(𝑡𝑡) = 𝑆̌𝑆0(𝑡𝑡)𝑟𝑟𝑖𝑖   

where 𝑟𝑟𝑖𝑖 represents the individual’s predicted risk score as a consequence of the individual’s 

variable values and estimated Cox model parameters. From the predicted individual survivor 

curve, the compliment of the survival probability is obtained from the time-point of interest to 

generate a prediction distribution of kidney failure at that timeframe. For example, patient 𝑖𝑖’s 

predicted survival at 12 months, given their risk score 𝑟𝑟𝑖𝑖, is computed as 

% 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (12 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑠𝑠) = 100% ∙ �1 −  𝑆̌𝑆0(12 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ)𝑟𝑟𝑖𝑖�. 

 

Time-Varying Cox Regression 

Baseline Cox regression models, such as the KFRE, take variables as constant over the study 

period and do not incorporate more recent follow-up data into the fitting process. To overcome 
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this limitation, we derived a Cox model with time-varying variables to allow the Cox model to 

leverage all follow-up measurement data during fitting. Like the baseline Cox model, the most 

recent clinical data was fed into the model to predict an updated risk score for the patient, from 

which kidney failure probabilities were derived at each 6-, 12- and 24-month time point. All 

continuous variables were treated as time-varying in this analysis. Time-varying covariates 

require knowledge of variable values of all patients still in the risk set (i.e., still being observed at 

the time-of-event) at each time any patient develops kidney failure. Given that the timing of this 

event may occur in between visits for other patients, we approximated variable values by 

considering the most recently obtained measurement as constant over that period (until the 

following visit). That is, we broke down a patient’s observation time into periods marked by their 

visits and associate their most recent variable values with that entire period [52]. Hazard was then 

computed on those updated values for patients still in the risk set, as opposed to the baseline 

measurements as was done with the baseline Cox regression model. It is important to note the 

difference in interpretation in the estimated parameters in time-varying covariates compared with 

the approach for baseline covariates. Under baseline covariates the beta parameters can be 

interpreted as the effect on hazard of unit differences in the covariate, at time zero. Under time-

varying covariates, the beta parameters assess differences in hazard with respect to covariates 

at any defined time period [52, 57], making time-varying modeling more conducive to dynamic 

prediction [72]. To obtain a prediction of kidney failure, we used the formulation given by Altman 

and De Stavola, [57] for the probability of surviving through an interval 𝑡𝑡 + ℎ, conditional on 

survival to 𝑡𝑡: 

𝑃𝑃𝚤𝚤�(𝑡𝑡, 𝑡𝑡 + ℎ) = exp�−�𝐻𝐻�0(𝑡𝑡 + ℎ) − 𝐻𝐻�0(𝑡𝑡)� ∗ 𝑟𝑟𝑖𝑖�. 

𝐻𝐻�0(𝑡𝑡 + ℎ) represents the baseline cumulative hazard function ℎ months out from the time of the 

current visit. We take ℎ to be 6, 12, or 24 months. 𝑟𝑟𝑖𝑖 represents the risk score for the patient using 

their most recently obtained lab measurements. 



124 

 

 

Random Survival Forest 

Random survival forests are an increasingly prominent machine learning approach to survival 

analysis as a way to incrementally boost performance over traditional Cox methodology while still 

producing predicted survivor curves [48, 107]. A random survival forest incorporates only baseline 

visit data (same as the baseline Cox model) into a bagged ensemble of decision trees. Algorithm 

hyperparameters were specified to 500 decision trees and out-of-bag evaluation. As a measure 

of regularization, we specified tree growth to a maximum depth of 16, minimum number of 

samples required by a leaf node to 8, and the minimum number of samples to split an internal 

node to 4 [108]. Random survival forests employ a log-rank test to determine if a node split 

produces significantly different survival distributions in the new potential leaf nodes. For a new 

individual, a predicted survivor curve was generated using a Kaplan-Meier estimate of the 

samples in the terminal node of that individual’s decision path. We then obtained timeframe-

specific probabilities from the predicted survivor curves, aggregated over each tree in the 

ensemble. As with the baseline Cox model, random survival forests were reapplied at each patient 

follow-up visit, and probabilities were taken from the 6-, 12-, and 24-month time points. 

 

Random Forest Classifier 

Frequent and routine follow-up in advanced CKD clinics yields the question of short-timeframe 

prediction to alternative modeling paradigms, namely classification. Therefore, on each of the 

variable sets and timeframes we trained an independent random forest classifier using all 

available visit data to predict a probability of kidney failure 6, 12, 24 months away from each clinic 

visit. The random forest algorithm is a bagged ensemble method for supervised machine learning 

[61]. The same hyperparameters were employed as with the random survival forest. Each class 

was weighted according to its prevalence in the respective dataset to compensate for class 

imbalances. Random forest classifiers were trained to predict visits 6, 12, or 24 months away from 
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kidney failure. The trained models produced prediction probability distributions over the relevant 

timeframe as the arithmetic mean of each individual decision tree prediction. 

 

Statistical Analysis to Compare Model Performance 

We performed five-fold cross-validation with stratified cold-patient splits, ensuring each fold 

contained a class balance representative of the overall data, and all of a patient’s visits were 

contained within a single fold. Given the class imbalance within our 6-month dataset, K=5 was 

the largest value for K that ensured representative data conditions were maintained in each fold 

(class balance, unique patients). 

While AUC-ROC is more commonly used, AUC-PR better reflects performance in 

imbalanced data sets, such as is the case here (i.e., more visits without outcome event than with 

outcome event within the timeframe in question); though no single metric in isolation is sufficient. 

However, while AUC-type metrics summarize predictive performance at all possible 

decision threshold values, many of those threshold values are irrelevant (e.g., using extremely 

permissive or restrictive thresholds). The PrRe70 captures a model's performance at one point 

along the PR curve, representing a more concrete statement of potential clinical impact. 
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A.2 Supplemental Appendix 

Supplemental Table A-1. Minimum Information about Clinical Artificial Intelligence 

Modeling (MI-CLAIM) Checklist. 

Study design (Part 1) Completed: 
page number 

Notes if not completed                                 

The clinical problem in which the 
model will be employed is clearly 
detailed in the paper. 

☑ 81 
 

The research question is clearly 
stated. ☑ 81-82 

 

The characteristics of the cohorts 
(training and test sets) are detailed 
in the text.   ☑ 

83-84, 
88-89, 11, 
Tab. 4-1, 

Supp 
Tab. A-9 

 

The cohorts (training and test sets) 
are shown to be representative of 
real-world clinical settings. ☑ 

83-84, 
88-89, 11, 
Tab. 4-1, 

Supp 
Tab. A-9 

 

The state-of-the-art solution used 
as a baseline for comparison has 
been identified and detailed.  

☑ 81-82, 85 
 

Data and optimization (Parts 2, 3) Completed: 
page number 

Notes if not completed                                 

The origin of the data is described 
and the original format is detailed in 
the paper. 

☑ 83 
 

The independence between training 
and test sets has been proven in 
the paper. 

☑ 86-88 
 

Transformations of the data before 
it is applied to the proposed model 
are described.  ☑ 

Sup. 
Meth. 

(Appendix 
A.1) 

 

Details on the models that were 
evaluated and the code developed 
to select the best model are 
provided. 

☐  

Model/variable selection was not performed. Reasonable 
a priori variable selections and model hyperparameters 
were selected based on prior relevant literature and 
machine-learning best-practices. 

Is the input data type structured or 
unstructured? ☑ Structured                           ☐ Unstructured 

Model performance (Part 4) Completed: 
page number 

Notes if not completed                                 

The primary metric selected to 
evaluate algorithm performance 
(e.g.: AUC, F-score, etc) including 
the justification for selection, has 
been clearly stated.  

☑ 86-88 
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The primary metric selected to 
evaluate the clinical utility of the 
model (e.g. PPV, NNT, etc) 
including the justification for 
selection, has been clearly stated. 

☑ 

86-88, 
Sup. 
Meth. 

(Appendix 
A.1) 

 

The performance comparison 
between baseline and proposed 
model is presented with the 
appropriate statistical significance. 

☑ 89-91. 
Tab. 4-2 

Non-parametric statistics were used by comparing 
overlapping 95% confidence intervals derived using 
bootstrapping. 

Model Examination (Parts 5) Completed: 
page number 

Notes if not completed                                 

Examination Technique 1a 

☑ 101 
 

Examination Technique 2a 

☑ 101 
 

A discussion of the relevance of the 
examination results with respect to 
model/algorithm performance is 
presented. 

☑ 104 

 

A discussion of the feasibility and 
significance of model interpretability 
at the case level if examination 
methods are uninterpretable is 
presented. 

☑ 105 

 

A discussion of the reliability and 
robustness of the model as the 
underlying data distribution shifts is 
included. 

☑ 106 

 

Reproducibility (Part 6): choose appropriate tier of 
transparency  

Notes  

Tier 1: complete sharing of the code 

☑ 

Essential experiment code is shared as a pair of Jupyter 
notebooks, available on Zenodo at: 
https://doi.org/10.5281/zenodo.8070935. Certain steps 
of the experiments are excluded for issues of patient 
confidentiality or clarity of experiments. 

Tier 2: allow a third party to 
evaluate the code for 
accuracy/fairness; share the results 
of this evaluation 

☐ 

 

Tier 3: release of a virtual machine 
(binary) for running the code on 
new data without sharing its details 

☐ 
 

Tier 4: no sharing 
☐ 

 

Abbreviations: PPV, Positive Predictive Value; NNT, Numbers Needed to Treat. 
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Supplemental Table A-2. Python software libraries used in analyses. 

Package  Used For  

lifelines (v0.27) [109] Cox regression modeling. 

scikit-learn (v1.02) [63] Random forest classifier modeling and experiment pipelining. 

scikit-survival (v0.17.2) [110] Random survival forest modeling. 

numpy (v1.22.4) [111] Statistical analyses and data wrangling. 

eli5 (v0.13.0) Permutation importance (Examination 2). 

SHAP (v0.41.0) [112] Computation of Shapley Values and visualization plots (Examination 1). 
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Supplemental Table A-3. Cross-validation area under the precision-recall curve (AUC-PR) score results of 6, 12, and 24-
month models across variable sets (95% confidence intervals) in derivation cohort. 

  Timeframe 

  6-Month 12-Month 24-Month 

C
ox

 B
as

el
in

e 4 Variable 0.62 (0.59, 0.64) 0.77 (0.74, 0.79) 0.86 (0.84, 0.89) 

8 Variable 0.62 (0.59, 0.64) 0.76 (0.74, 0.78) 0.86 (0.83, 0.88) 

10 Variable 0.62 (0.60, 0.64) 0.76 (0.75, 0.78) 0.86 (0.84, 0.88) 

13 Variable 0.63 (0.60, 0.65) 0.76 (0.75, 0.78) 0.86 (0.84, 0.88) 

C
ox

 T
im

e-
Va

ry
in

g 

4 Variable 0.70 (0.67, 0.73) 0.79 (0.76, 0.81) 0.85 (0.83, 0.86) 

8 Variable 0.70 (0.67, 0.73) 0.79 (0.75, 0.82) 0.85 (0.83, 0.86) 

10 Variable 0.70 (0.68, 0.73) 0.79 (0.75, 0.82) 0.85 (0.83, 0.86) 

13 Variable 0.71 (0.68, 0.73) 0.79 (0.76, 0.81) 0.85 (0.83, 0.86) 

R
an

do
m

 
Su

rv
iv

al
 

Fo
re

st
 

4 Variable 0.68 (0.65, 0.72) 0.79 (0.77, 0.80) 0.87 (0.85, 0.88) 

8 Variable 0.69 (0.65, 0.72) 0.79 (0.77, 0.81) 0.87 (0.85, 0.88) 

10 Variable 0.69 (0.65, 0.72) 0.79 (0.77, 0.81) 0.87 (0.85, 0.89) 

13 Variable 0.69 (0.64, 0.72) 0.79 (0.77, 0.81) 0.87 (0.85, 0.88) 

R
an

do
m

 
Fo

re
st

 
C

la
ss

ifi
er

 4 Variable 0.70 (0.67, 0.72) 0.79 (0.77, 0.81) 0.87 (0.86, 0.88) 

8 Variable 0.70 (0.67, 0.72) 0.80 (0.77, 0.82) 0.88 (0.86, 0.89) 

10 Variable 0.70 (0.68, 0.72) 0.80 (0.78, 0.82) 0.88 (0.86, 0.89) 

13 Variable 0.71 (0.68, 0.73) 0.80 (0.78, 0.82) 0.88 (0.86, 0.89) 
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Supplemental Table A-4. Cross-validation Brier score results of 6, 12, and 24-month models across variable sets (95% 

confidence intervals) in derivation cohort. 

  Timeframe 

  6-Month 12-Month 24-Month 

C
ox

 B
as

el
in

e 4 Variable 0.14 (0.14, 0.14) 0.17 (0.16, 0.17) 0.16 (0.16, 0.17) 

8 Variable 0.14 (0.14, 0.14) 0.17 (0.16, 0.17) 0.16 (0.16, 0.17) 

10 Variable 0.13 (0.12, 0.13) 0.15 (0.15, 0.16) 0.17 (0.16, 0.18) 

13 Variable 0.13 (0.12, 0.13) 0.15 (0.15, 0.16) 0.17 (0.16, 0.18) 

C
ox

 T
im

e-
Va

ry
in

g 

4 Variable 0.11 (0.11, 0.11) 0.16 (0.15, 0.17) 0.22 (0.21, 0.22) 

8 Variable 0.11 (0.10, 0.11) 0.16 (0.15, 0.17) 0.21 (0.21, 0.22) 

10 Variable 0.10 (0.10, 0.11) 0.15 (0.14, 0.16) 0.20 (0.19, 0.21) 

13 Variable 0.10 (0.10, 0.11) 0.15 (0.14, 0.16) 0.19 (0.19, 0.21) 

R
an

do
m

 
Su

rv
iv

al
 

Fo
re

st
 

4 Variable 0.11 (0.11, 0.12) 0.14 (0.14, 0.15) 0.16 (0.15, 0.17) 

8 Variable 0.12 (0.12, 0.12) 0.15 (0.14, 0.15) 0.16 (0.15, 0.17) 

10 Variable 0.12 (0.11, 0.12) 0.14 (0.14, 0.15) 0.16 (0.15, 0.17) 

13 Variable 0.12 (0.12, 0.12) 0.15 (0.14, 0.15) 0.16 (0.15, 0.17) 

R
an

do
m

 
Fo

re
st

 
C

la
ss

ifi
er

 4 Variable 0.12 (0.12, 0.13) 0.15 (0.14, 0.16) 0.16 (0.15, 0.17) 

8 Variable 0.12 (0.12, 0.12) 0.14 (0.13, 0.15) 0.15 (0.15, 0.16) 

10 Variable 0.12 (0.12, 0.12) 0.14 (0.13, 0.15) 0.15 (0.15, 0.16) 

13 Variable 0.12 (0.12, 0.12) 0.14 (0.13, 0.15) 0.15 (0.15, 0.16) 
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Supplemental Table A-5. Baseline Cox regression hazard ratios (95% confidence intervals) and p-values indicating 

significance over HR=1 in derivation cohort. 

 Variable Set 

 4 Variable 8 Variable 10 Variable 13 Variable 

Age, per 1 year 0.977 (0.973, 0.981) 
P < 0.001 

0.978 (0.974, 0.982) 
P < 0.001 

0.976 (0.972, 0.980) 
P < 0.001 

0.974 (0.970, 0.978) 
P < 0.001 

Female Sex 0.776 (0.690, 0.874) 
P < 0.001 

0.798 (0.707, 0.900) 
P < 0.001 

0.802 (0.711, 0.905) 
P < 0.001 

0.794 (0.703, 0.896) 
P < 0.001 

eGFR, per 1 mL/min/1.73m2 0.896 (0.886, 0.906) 0.906 (0.895, 0.917) 0.904 (0.893, 0.916) 0.902 (0.891, 0.914) 

Urine Albumin-to-Creatinine Ratio, per 
1 mg/mmola 

1.002 (1.002, 1.002) 
P < 0.001 

1.001 (1.001, 1.002) 
P < 0.001 

1.001 (1.001, 1.002) 
P < 0.001 

1.001 (1.001, 1.002) 
P < 0.001 

Calcium, per 1 mmol/La  0.439 (0.292, 0.661) 
P < 0.001 

0.416 (0.276, 0.627) 
P < 0.001 

0.455 (0.300, 0.689) 
P < 0.001 

Phosphate, per 1 mmol/La  1.536 (1.256, 1.879) 
P < 0.001 

1.452 (1.183, 1.782) 
P < 0.001 

1.437 (1.169, 1.766) 
P = 0.001 

Bicarbonate, per 1 mmol/La  0.987 (0.968, 1.006) 
P = 0.188 

0.985 (0.966, 1.005) 
P = 0.137 

0.980 (0.960, 1.000) 
P = 0.054 

Albumin, per 1 g/La  0.98 (0.965, 0.995) 
P = 0.009 

0.981 (0.966, 0.996) 
P = 0.013 

0.976 (0.961, 0.991) 
P = 0.002 

Diabetes Mellitus   1.012 (0.893, 1.146) 
P = 0.857 

0.976 (0.859, 1.108) 
P = 0.704 

Hypertension   1.540 (1.231, 1.927) 
P < 0.001 

1.477 (1.180, 1.850) 
P = 0.001 

Congestive Heart Failure    1.207 (1.041, 1.399) 
P = 0.013 

Potassium, per 1 mmol/La    0.999 (0.900, 1.108) 
P = 0.979 

Systolic Blood Pressure, per 1 mmHg    1.006 (1.004, 1.009) 
P < 0.001 

Abbreviations: eGFR, estimated glomerular filtration rate. 
a Laboratory data presented in International System of Units (SI). Conversion to traditional units is as follows: urine albumin-to-creatinine ratio CF 8.85 to convert to 
mg/g; calcium CF 4.008 to convert to mg/dL; phosphate CF 3.097 to convert to mg/dL; bicarbonate CF 1.0 to convert to mEq/L; albumin CF 0.1 to convert to g/dL; 
potassium CF 1.0 to convert to mEq/L. 
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Supplemental Table A-6. Time-varying Cox regression hazard ratios (95% confidence intervals) and p-values indicating 

significance over HR=1 in derivation cohort. 

Abbreviations: eGFR, estimated glomerular filtration rate. 
a Laboratory data presented in International System of Units (SI). Conversion to traditional units is as follows: urine albumin-to-creatinine ratio CF 8.85 to convert to 
mg/g; calcium CF 4.008 to convert to mg/dL; phosphate CF 3.097 to convert to mg/dL; bicarbonate CF 1.0 to convert to mEq/L; albumin CF 0.1 to convert to g/dL; 
potassium CF 1.0 to convert to mEq/L. 
 

 Variable Set 

 4 Variable 8 Variable 10 Variable 13 Variable 

Age, per 1 year 0.985 (0.981, 0.989) 
P < 0.001 

0.985 (0.982, 0.989) 
P < 0.001 

0.984 (0.980, 0.988) 
P < 0.001 

0.982 (0.978, 0.986) 
P < 0.001 

Female Sex 0.706 (0.627, 0.795) 
P < 0.001 

0.720 (0.638, 0.811) 
P < 0.001 

0.725 (0.643, 0.818) 
P < 0.001 

0.728 (0.646, 0.822) 
P < 0.001 

eGFR, per 1 mL/min/1.73m2 0.683 (0.671, 0.696) 
P < 0.001 

0.700 (0.685, 0.714) 
P < 0.001 

0.697 (0.682, 0.712) 
P < 0.001 

0.695 (0.681, 0.710) 
P < 0.001 

Urine Albumin-to-Creatinine Ratio, per 
1 mg/mmola 

1.001 (1.001, 1.001) 
P < 0.001 

1.001 (1.001, 1.001) 
P < 0.001 

1.001 (1.000, 1.001) 
P < 0.001 

1.001 (1.000, 1.001) 
P < 0.001 

Calcium, per 1 mmol/La  0.649 (0.463, 0.909) 
P = 0.012 

0.644 (0.459, 0.904) 
P = 0.011 

0.650 (0.462, 0.915) 
P = 0.014 

Phosphate, per 1 mmol/La  1.592 (1.342, 1.889) 
P < 0.001 

1.546 (1.301, 1.838) 
P < 0.001 

1.537 (1.291, 1.829) 
P < 0.001 

Bicarbonate, per 1 mmol/La  1.016 (0.997, 1.035) 
P = 0.092 

1.012 (0.993, 1.032) 
P = 0.204 

1.008 (0.989, 1.028) 
P = 0.401 

Albumin, per 1 g/La  0.975 (0.963, 0.988) 
P < 0.001 

0.975 (0.963, 0.987) 
P < 0.001 

0.974 (0.961, 0.986) 
P < 0.001 

Diabetes Mellitus   1.136 (1.002, 1.288) 
P = 0.047 

1.067 (0.938, 1.213) 
P = 0.325 

Hypertension   1.351 (1.080, 1.692) 
P = 0.009 

1.326 (1.058, 1.662) 
P = 0.014 

Congestive Heart Failure    1.563 (1.345, 1.816) 
P < 0.001 

Potassium, per 1 mmol/La    0.950 (0.854, 1.057) 
P = 0.349 

Systolic Blood Pressure, per 1 mmHg    1.004 (1.001, 1.007) 
P = 0.015 
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Supplemental Table A-7. Random survival forest variable permutation importance (95% confidence intervals) on Brier score 

in derivation cohort. 

 Variable Set 
 4 Variable 8 Variable 10 Variable 13 Variable 

A
ge

 6 Month 
12 Month 
24 Month 

0.00 (0.00, 0.00) 
0.01 (0.01, 0.01) 
0.02 (0.01, 0.02) 

0.00 (0.00, 0.00) 
0.01 (0.01, 0.01) 
0.01 (0.01, 0.01) 

0.00 (0.00, 0.00) 
0.01 (0.00, 0.01) 
0.01 (0.01, 0.01) 

0.00 (0.00, 0.00) 
0.00 (0.00, 0.01) 
0.01 (0.01, 0.01) 

Fe
m

al
e 

Se
x 6 Month 

12 Month 
24 Month 

0.00 (0.00, 0.00) 
0.00 (0.00, 0.00) 
0.00 (0.00, 0.00) 

0.00 (0.00, 0.00) 
0.00 (0.00, 0.00) 
0.00 (0.00, 0.00) 

0.00 (0.00, 0.00) 
0.00 (0.00, 0.00) 
0.00 (0.00, 0.00) 

0.00 (0.00, 0.00) 
0.00 (0.00, 0.00) 
0.00 (0.00, 0.00) 

eG
FR

 6 Month 
12 Month 
24 Month 

0.08 (0.08, 0.08) 
0.12 (0.12, 0.12) 
0.11 (0.10, 0.11) 

0.05 (0.05, 0.05) 
0.08 (0.08, 0.08) 
0.07 (0.07, 0.08) 

0.06 (0.06, 0.06) 
0.09 (0.08, 0.09) 
0.08 (0.08, 0.08) 

0.05 (0.05, 0.05) 
0.08 (0.07, 0.08) 
0.07 (0.07, 0.07) 

U
rin

e 
A

lb
um

in
-

to
-

C
re

at
in

in
e  6 Month 

12 Month 
24 Month 

0.02 (0.01, 0.02) 
0.03 (0.02, 0.03) 
0.04 (0.03, 0.04) 

0.01 (0.01, 0.01) 
0.02 (0.01, 0.02) 
0.02 (0.02, 0.03) 

0.01 (0.01, 0.01) 
0.02 (0.01, 0.02) 
0.03 (0.02, 0.03) 

0.01 (0.01, 0.01) 
0.01 (0.01, 0.02) 
0.02 (0.02, 0.03) 

C
al

ci
um

 

6 Month 
12 Month 
24 Month 

 
0.00 (0.00, 0.00) 
0.00 (0.00, 0.00) 
0.00 (0.00, 0.00) 

0.00 (0.00, 0.00) 
0.00 (0.00, 0.00) 
0.00 (0.00, 0.00) 

0.00 (0.00, 0.00) 
0.00 (0.00, 0.00) 
0.00 (0.00, 0.00) 

Ph
os

ph
at

e 

6 Month 
12 Month 
24 Month 

 
0.00 (0.00, 0.00) 
0.01 (0.00, 0.01) 
0.01 (0.01, 0.01) 

0.00 (0.00, 0.00) 
0.00 (0.00, 0.00) 
0.01 (0.01, 0.01) 

0.00 (0.00, 0.01) 
0.00 (0.00, 0.01) 
0.01 (0.01, 0.01) 
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B
ic

ar
bo

na
te

 6 Month 
12 Month 
24 Month 

 
0.00 (0.00, 0.00) 
0.00 (0.00, 0.00) 
0.00 (-0.00, 0.00) 

0.00 (0.00, 0.00) 
0.00 (0.00, 0.00) 
0.00 (0.00, 0.00) 

0.00 (0.00, 0.00) 
0.00 (0.00, 0.00) 
0.00 (0.00, 0.00) 

A
lb

um
in

 

6 Month 
12 Month 
24 Month 

 
0.00 (0.00, 0.00) 
0.00 (-0.00, 0.00) 
0.00 (0.00, 0.00) 

0.00 (0.00, 0.00) 
0.00 (0.00, 0.00) 
0.00 (0.00, 0.00) 

0.00 (0.00, 0.00) 
0.00 (0.00, 0.00) 
0.00 (0.00, 0.00) 

D
ia

be
te

s 
M

el
lit

us
 

6 Month 
12 Month 
24 Month 

  
-0.00 (-0.00, 0.00) 
0.00 (-0.00, 0.00) 
0.00 (0.00, 0.00) 

0.00 (-0.00, 0.00) 
0.00 (-0.00, 0.00) 
0.00 (0.00, 0.00) 

H
yp

er
te

ns
io

n 6 Month 
12 Month 
24 Month 

  
0.00 (-0.00, 0.00) 
0.00 (0.00, 0.00) 
0.00 (-0.00, 0.00) 

0.00 (-0.00, 0.00) 
0.00 (-0.00, 0.00) 
0.00 (0.00, 0.00) 

C
on

ge
st

iv
e 

H
ea

rt
 

Fa
ilu

re
 

6 Month 
12 Month 
24 Month 

   
0.00 (-0.00, 0.00) 
0.00 (0.00, 0.00) 

-0.00 (-0.00, 0.00) 

Po
ta

ss
iu

m
 6 Month 

12 Month 
24 Month 

   
-0.00 (-0.00, 0.00) 
-0.00 (-0.00, 0.00) 
-0.00 (-0.00, 0.00) 

Sy
st

ol
ic

 
B

lo
od

 
Pr

es
su

re
 

6 Month 
12 Month 
24 Month 

   
0.00 (0.00, 0.00) 
0.00 (0.00, 0.00) 
0.00 (0.00, 0.00) 

Abbreviations: eGFR, estimated glomerular filtration rate. 
For each variable and timeframe (6, 12, 24 months), permutation importance is computed as the bootstrap of the sampled mean Brier scores obtained over cross-
validation. 95% confidence intervals are expressed within (). Values can be interpreted as the change to the Brier score when the variable is randomly permuted. 
Larger absolute numbers indicate greater predictive importance, and zero low importance. 
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Supplemental Table A-8. Random forest classifier variable permutation importance (95% confidence intervals) on Brier 

score in derivation cohort. 

 Variable Set 
 4 Variable 8 Variable 10 Variable 13 Variable 

A
ge

 6 Month 
12 Month 
24 Month 

0.01 (0.01, 0.01) 
0.01 (0.01, 0.02) 
0.03 (0.02, 0.03) 

0.00 (0.00, 0.00) 
0.01 (0.01, 0.01) 
0.02 (0.02, 0.02) 

0.00 (0.00, 0.00) 
0.01 (0.01, 0.01) 
0.02 (0.02, 0.02) 

0.00 (0.00, 0.00) 
0.01 (0.01, 0.01) 
0.02 (0.01, 0.02) 

Fe
m

al
e 

Se
x 6 Month 

12 Month 
24 Month 

0.00 (0.00, 0.00) 
0.00 (-0.00, 0.00) 
0.00 (-0.00, 0.00) 

0.00 (0.00, 0.00) 
0.00 (0.00, 0.00) 
0.00 (0.00, 0.00) 

0.00 (0.00, 0.00) 
0.00 (0.00, 0.00) 
0.00 (0.00, 0.00) 

0.00 (0.00, 0.00) 
0.00 (0.00, 0.00) 
0.00 (-0.00, 0.00) 

eG
FR

 6 Month 
12 Month 
24 Month 

0.12 (0.12, 0.13) 
0.14 (0.14, 0.14) 
0.12 (0.11, 0.12) 

0.09 (0.09, 0.10) 
0.11 (0.10, 0.11) 
0.09 (0.08, 0.10) 

0.09 (0.09, 0.10) 
0.11 (0.11, 0.11) 
0.09 (0.09, 0.09) 

0.09 (0.08, 0.09) 
0.10 (0.10, 0.11) 
0.08 (0.08, 0.09) 

U
rin

e 
A

lb
um

in
-

to
-

C
re

at
in

in
e  6 Month 

12 Month 
24 Month 

0.01 (0.01, 0.02) 
0.03 (0.03, 0.03) 
0.04 (0.03, 0.04) 

0.01 (0.0, 0.01) 
0.02 (0.02, 0.02) 
0.03 (0.02, 0.03) 

0.01 (0.0, 0.01) 
0.02 (0.02, 0.02) 
0.03 (0.02, 0.03) 

0.01 (0.01, 0.01) 
0.02 (0.02, 0.02) 
0.03 (0.02, 0.03) 

C
al

ci
um

 

6 Month 
12 Month 
24 Month 

 
0.00 (-0.00, 0.00) 
0.00 (-0.00, 0.00) 
0.00 (0.00, 0.00) 

0.00 (-0.00, 0.00) 
0.00 (-0.00, 0.00) 
0.00 (0.00, 0.00) 

0.00 (-0.00, 0.00) 
0.00 (-0.00, 0.00) 
0.00 (0.00, 0.00) 

Ph
os

ph
at

e 

6 Month 
12 Month 
24 Month 

 
0.00 (0.00, 0.00) 
0.00 (0.00, 0.00) 
0.00 (0.00, 0.00) 

0.00 (0.00, 0.00) 
0.00 (0.00, 0.00) 
0.00 (0.00, 0.00) 

0.00 (0.00, 0.00) 
0.00 (0.00, 0.01) 
0.00 (0.00, 0.01) 
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B
ic

ar
bo

na
te

 6 Month 
12 Month 
24 Month 

 
-0.00 (-0.00, 0.00) 
0.00 (-0.00, 0.00) 
0.00 (-0.00, 0.00) 

0.00 (-0.00, 0.00) 
-0.00 (-0.00, 0.00) 
0.00 (-0.00, 0.00) 

-0.00 (-0.00, 0.00) 
0.00 (-0.00, 0.00) 
0.00 (0.00, 0.00) 

A
lb

um
in

 

6 Month 
12 Month 
24 Month 

 
-0.00 (-0.00, 0.00) 
0.00 (0.00, 0.00) 
0.00 (0.00, 0.00) 

-0.00 (-0.00, 0.00) 
0.00 (0.00, 0.00) 
0.00 (0.00, 0.00) 

0.00 (-0.00, 0.00) 
0.00 (0.00, 0.00) 
0.00 (0.00, 0.00) 

D
ia

be
te

s 
M

el
lit

us
 

6 Month 
12 Month 
24 Month 

  
-0.00 (-0.00, -0.00) 
0.00 (-0.00, 0.00) 
0.00 (0.00, 0.00) 

-0.00 (-0.00, -0.00) 
0.00 (0.00, 0.00) 
0.00 (0.00, 0.00) 

H
yp

er
te

ns
io

n 6 Month 
12 Month 
24 Month 

  
0.00 (-0.00, 0.00) 
0.00 (0.00, 0.00) 
0.00 (-0.00, 0.00) 

0.00 (-0.00, 0.00) 
0.00 (0.00, 0.00) 
0.00 (0.00, 0.00) 

C
on

ge
st

iv
e 

H
ea

rt
 

Fa
ilu

re
 

6 Month 
12 Month 
24 Month 

   
0.00 (0.00, 0.00) 
0.00 (0.00, 0.00) 
0.00 (-0.00, 0.00) 

Po
ta

ss
iu

m
 6 Month 

12 Month 
24 Month 

   
0.00 (-0.00, 0.00) 
-0.00 (-0.00, 0.00) 
0.00 (0.00, 0.00) 

Sy
st

ol
ic

 
B

lo
od

 
Pr

es
su

re
 

6 Month 
12 Month 
24 Month 

   
-0.00 (-0.00, 0.00) 
0.00 (-0.00, 0.00) 
0.00 (0.00, 0.00) 

Abbreviations: eGFR, estimated glomerular filtration rate. 
For each variable and timeframe (6, 12, 24 months), permutation importance is computed as the bootstrap of the sampled mean Brier scores obtained over cross-
validation. 95% confidence intervals are expressed within (). Values can be interpreted as the change to the Brier score when the variable is randomly permuted. 
Larger absolute numbers indicate greater predictive importance, and zero low importance. 
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Supplemental Table A-9. Baseline characteristics of external validation cohort.  

 Kingston General Hospital 
(N = 493; 2016-2023) 

University Health Network, Toronto 
(N = 209; 2015-2023) 

 
Variable 

 
Summary Statistics 

 

 
Summary Statistics 

Demographics   
Age,  
Years, Mean (SD) 69 (14) 66 (18) 

Male Sex,  
N (%) 300 (61) 120 (57) 

Laboratory Dataa   
Creatinine,  
mg/dL, Mean (SD) 3.37 (1.21) 2.91 (1.09) 

eGFR,  
mL/min/1.73m2, Mean (SD) 19 (7) 23 (8) 

Urine Albumin-to-Creatinine Ratio,  
mg/g, Median (IQR) 1336 (389, 3132) 841 (292, 2292) 

Calcium,  
mg/dL, Mean (SD) 9.10 (0.68) 9.18 (0.60) 

Phosphate,  
mg/dL, Mean (SD) 4.24 (0.99) 4.09 (0.90) 

Bicarbonate,  
mEq/L, Mean (SD) 23 (4) 23 (4) 

Albumin,  
g/dL, Mean (SD) 3.4 (0.6) 3.9 (0.5) 

Comorbidities, N (%)   
Diabetes Mellitus 323 (66) 119 (57) 
Hypertension 434 (88) 200 (96) 
Congestive Heart Failure 93 (19) 32 (15) 
Outcomes, N (%)   
Kidney Failure 361 (73) 91 (44) 
Death Before Kidney Failure 132 (27) 44 (21) 
Still Followed 0 (0) 74 (35) 

Abbreviations: eGFR, estimated glomerular filtration rate; IQR, interquartile range; N, number; SD, standard deviation. 
a Laboratory data presented in traditional units. Conversion to International System of Units (SI) is as follows: creatinine conversion factor (CF) 88.42 to convert to 
µmol/L; urine albumin-to-creatinine ratio CF 0.113 to convert to mg/mmol; calcium CF 0.2495 to convert to mmol/L; phosphate CF 0.3229 to convert to mmol/L; 
bicarbonate CF 1.0 to convert to mmol/L; albumin CF 10.0 to convert to g/L. 
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Supplemental Table A-10. External testing area under the precision-recall curve (AUC-PR) score results of selected 6, 12, and 

24-month models (95% confidence intervals) in validation cohort. 

  Timeframe 

  6-Month 12-Month 24-Month 

C
ox

 
B

as
el

in
e 

4 Variable 0.70 (0.66, 0.73) 0.83 (0.80, 0.86) 0.90 (0.88, 0.92) 

C
ox

 
Ti

m
e-

Va
ry

in
g 

8 Variable 0.71 (0.67, 0.75) 0.81 (0.78, 0.84) 0.86 (0.84, 0.89) 

R
an

do
m

 
Su

rv
iv

al
 

Fo
re

st
 

8 Variable 0.71 (0.68, 0.74) 0.82 (0.79, 0.85) 0.88 (0.86, 0.90) 

R
an

do
m

 
Fo

re
st

 
C

la
ss

ifi
er

 

8 Variable 0.72 (0.68, 0.75) 0.82 (0.79, 0.85) 0.89 (0.86, 0.91) 
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Supplemental Table A-11. External testing Brier score results of selected 6, 12, and 24-month models (95% confidence 

intervals) in validation cohort. 

  Timeframe 

  6-Month 12-Month 24-Month 

C
ox

 
B

as
el

in
e 

4 Variable 0.17 (0.16, 0.18) 0.18 (0.17, 0.20) 0.16 (0.15, 0.17) 

C
ox

 
Ti

m
e-

Va
ry

in
g 

8 Variable 0.16 (0.15, 0.17) 0.22 (0.20, 0.23) 0.26 (0.24, 0.28) 

R
an

do
m

 
Su

rv
iv

al
 

Fo
re

st
 

8 Variable 0.15 (0.14, 0.16) 0.17 (0.16, 0.18) 0.17 (0.15, 0.18) 

R
an

do
m

 
Fo

re
st

 
C

la
ss

ifi
er

 

8 Variable 0.13 (0.12, 0.14) 0.15 (0.14, 0.17) 0.17 (0.15, 0.18) 
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Supplemental Figure A-1. SHAP analysis on random forest classifier output (%/100). 
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Abbreviations: eGFR, estimated glomerular filtration rate; ACR, urine albumin to creatinine ratio; CHF, Congestive Heart Failure; Systolic Blood Pressure. 
SHAP swarmplots for the (A) 4-variable, (B) 8-variable, (C) 10-variable, (D) 13-variable random forest classifier models at each timeframe (6, 12, and 24 months). 
We explain the same random sample (n=1000) for each model with respect to included variables. Variables are ordered based on inclusion in each variable set. 
Coded into color is the raw variable value for each example in the random sample using a trimmed normalization (5-95%) to avoid skewing from outliers. Encoded 
into the x-axis is the SHAP value, representing the mean marginal contribution of that variable value to the model output. In Figures A-D, a strong predictor will be 
greater-spread in the x-axis and have a uniformly diverging color distribution. 
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Supplemental Figure A-2. SHAP analysis on random survival forest output (risk score). 
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Abbreviations: eGFR, estimated glomerular filtration rate; ACR, urine albumin to creatinine ratio; CHF, Congestive Heart Failure; Systolic Blood Pressure. 
SHAP swarmplots for the (A) 4-variable, (B) 8-variable, (C) 10-variable, (D) 13-variable random survival forest models using predicted risk score. We explain the 
same random sample (n=100) for each model with respect to included variables. Variables are ordered based on inclusion in each variable set. Coded into color is 
the raw variable value for each example in the random sample using a trimmed normalization (5-95%) to avoid skewing from outliers. Encoded into the x-axis is the 
SHAP value, representing the mean marginal contribution of that variable value to the model output. In Figures A-D, a strong predictor will be greater-spread in the 
x-axis and have a uniformly diverging color distribution.
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Appendix B  Chapter 5 Supplemental Material 

B.1 Supplemental Appendix 

Supplemental Table B-1. Description of trend and change in laboratory measurements. 

ID Description of Property 

max Maximum over entire history. 

Δmax Difference from max. 

Δtmax Difference from max scaled by time. 

min Minimum over entire history. 

Δmin Difference from min. 

Δtmin Difference from min scaled by time. 

Δb Difference from baseline. 

Δtb Difference from baseline scaled by time. 

mean3 Moving 3-visit average. 

mean Average over entire history. 

Δtp First difference between visits scaled by time. 

std(Δtp) Standard deviation Δtp over entire history. 

mean(Δtp) Average of Δtp over entire history. 

a Instantaneous acceleration. 

mean(a) Average of a over entire history. 
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Supplemental Table B-2. Urine albumin-to-creatinine ratio missingness tests. 

Test Test Description Result 

Independence 
between the 
missingness of 
ACR and other 
features. 

Create a contingency table of ACR missingness 
against missingness in other features. Perform X2 
test with two degrees of freedom. 

 Other 
Observed 

Other 
Missing 

ACR 
Missing  

266 51 

ACR 
Observed 

1620 64 

p = <0.001  
 
We observed an association between 
ACR missingness and the missingness of 
one or more other features.  

Missing at 
Random (MAR) 

Fit logistic regression model between 
missingness indicator for ACR and the observed 
values of other features. 

Female Sex: p = 0.001 
Age: p = 0.20 
Creatinine: p < 0.001 
Year seen: p < 0.001 
Season (quarter): p = 0.87 
 
There is an association between ACR 
missingness and female sex, elevated 
baseline creatinine, and the year the 
patient was first seen. 
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Supplemental Table B-3. Random forest classifier hyperparameter space. 

Hyperparameter Search Space 

n_estimators [250‡, 500†] 

min_samples_leaf [4, 8†‡, 12] 

min_samples_split [2†, 5, 10‡] 

max_depth [None, 8‡, 16, 24†] 

max_features [1‡, 2, "sqrt"†] 

† Optimal for 6-month model. 
‡ Optimal for 12-month model. 
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Supplemental Table B-4. Python packages used. 

Task Package(s) 

Pipelining, data manipulation, statistical 
analysis 

pandas, numpy, scikit-learn, scipy 

Random forest build scikit-learn 

Figures matplotlib 
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Supplemental Table B-5. Minimum Information about Clinical Artificial Intelligence 

Modeling (MI-CLAIM) Checklist. 

Study design (Part 1) Completed: 
page number 

Notes if not completed                                 

The clinical problem in which the 
model will be employed is clearly 
detailed in the paper. 

☑ 96 
 

The research question is clearly 
stated. ☑ 96 

 

The characteristics of the cohorts 
(training and test sets) are detailed 
in the text.   

☑ Table 
3-2 

 

The cohorts (training and test sets) 
are shown to be representative of 
real-world clinical settings. 

☑ Table 
3-2 

 

The state-of-the-art solution used as 
a baseline for comparison has been 
identified and detailed.  

☑ 100 
 

Data and optimization (Parts 2, 3) Completed: 
page number 

Notes if not completed                                 

The origin of the data is described 
and the original format is detailed in 
the paper. 

☑ 98 
 

Transformations of the data before it 
is applied to the proposed model are 
described.  

☑ 98 
 

The independence between training 
and test sets has been proven in the 
paper. 

☑ 99 
 

Details on the models that were 
evaluated and the code developed to 
select the best model are provided. 

☑ 99 
 

Is the input data type structured or 
unstructured? ☑ Structured                           ☐ Unstructured 

Model performance (Part 4) Completed: 
page number 

Notes if not completed                                 

The primary metric selected to 
evaluate algorithm performance (eg: 
AUC, F-score, etc) including the 
justification for selection, has been 
clearly stated.  

☑ 100 

 

The primary metric selected to 
evaluate the clinical utility of the 
model (eg PPV, NNT, etc) including 
the justification for selection, has 
been clearly stated. 

☑ 100 

 

The performance comparison 
between baseline and proposed 
model is presented with the 
appropriate statistical significance. 

☑ Table 
5-1 
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Model Examination (Parts 5) Completed: 
page number 

Notes if not completed                                 

Examination Technique 1a 

☑ 101 
 

Examination Technique 2a 

☑ 101 
 

A discussion of the relevance of the 
examination results with respect to 
model/algorithm performance is 
presented. 

☑ 104 

 

A discussion of the feasibility and 
significance of model interpretability 
at the case level if examination 
methods are uninterpretable is 
presented. 

☑ 105 

 

A discussion of the reliability and 
robustness of the model as the 
underlying data distribution shifts is 
included. 

☑ 106 

 

Reproducibility (Part 6): choose appropriate tier of 
transparency  

Notes  

Tier 1: complete sharing of the code 
☑ 

https://github.com/OttawaNMMI/AcuteOnCKD.  

Tier 2: allow a third party to evaluate 
the code for accuracy/fairness; share 
the results of this evaluation 

☐ 
 

Tier 3: release of a virtual machine 
(binary) for running the code on new 
data without sharing its details 

☐ 
 

Tier 4: no sharing 
☐ 
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Supplemental Table B-6. Internal performance metrics by variable set (6-month model). 

 Brier Score 
(95% CI) 

AUC-ROC 
(95% CI) 

AUC-PR 
(95% CI) 

Clin Chem (8V) 0.117 (0.113, 0.121) 0.878 (0.871, 0.886) 0.679 (0.660, 0.698) 

3V 0.132 (0.127, 0.137) 0.855 (0.847, 0.864) 0.630 (0.609, 0.652) 

3V + Trends 0.119 (0.114, 0.123) 0.871 (0.863, 0.878) 0.678 (0.661, 0.696) 

4V 0.120 (0.116, 0.125) 0.872 (0.864, 0.880) 0.673 (0.654, 0.691) 

4V + Trends 0.113 (0.109, 0.117) 0.880 (0.872, 0.886) 0.696 (0.679, 0.713) 

8V 0.117 (0.113, 0.121) 0.878 (0.871, 0.885) 0.673 (0.654, 0.692) 

8V + Trends 0.110 (0.107, 0.114) 0.884 (0.877, 0.891) 0.691 (0.674, 0.709) 
Abbreviations: Clin Chem (8V), random forest classifier developed in the previous study incorporating 8 variables, 
including estimated glomerular filtration rate (eGFR), age, sex, urine albumin-to-creatinine ratio, phosphate, 
bicarbonate, calcium, and albumin; 3V, variable set with creatinine, age, sex; 4V, variable set with creatinine, age, sex, 
and urine albumin-to-creatinine ratio; 8V, same variable set as Clin Chem (8V) except with eGFR substituted for 
creatinine; Trends, denotes that features measuring change in the base variable set were synthesized and included 
into the model. 
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Supplemental Table B-7. Internal performance metrics by variable set (12-month model). 

 Brier Score 
(95% CI) 

AUC-ROC 
(95% CI) 

AUC-PR 
(95% CI) 

Clin Chem (8V) 0.143 (0.138, 0.148) 0.863 (0.855, 0.872) 0.781 (0.768, 0.795) 

3V 0.159 (0.154, 0.164) 0.835 (0.825, 0.845) 0.731 (0.713, 0.75) 

3V + Trends 0.15 (0.145, 0.155) 0.85 (0.842, 0.858) 0.762 (0.746, 0.777) 

4V 0.146 (0.141, 0.151) 0.857 (0.849, 0.866) 0.77 (0.755, 0.785) 

4V + Trends 0.143 (0.138, 0.147) 0.864 (0.856, 0.872) 0.784 (0.77, 0.798) 

8V 0.143 (0.138, 0.148) 0.863 (0.855, 0.872) 0.78 (0.767, 0.794) 

8V + Trends 0.141 (0.136, 0.146) 0.867 (0.859, 0.876) 0.782 (0.768, 0.796) 
Abbreviations: Clin Chem (8V), random forest classifier developed in the previous study incorporating 8 variables, 
including estimated glomerular filtration rate (eGFR), age, sex, urine albumin-to-creatinine ratio, phosphate, 
bicarbonate, calcium, and albumin; 3V, variable set with creatinine, age, sex; 4V, variable set with creatinine, age, sex, 
and urine albumin-to-creatinine ratio; 8V, same variable set as Clin Chem (8V) except with eGFR substituted for 
creatinine; Trends, denotes that features measuring change in the base variable set were synthesized and included 
into the model. 
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Supplemental Table B-8. Internal performance metrics stratified by group (6-month model). 

Group Brier Score  
(95% CI) 

AUC-ROC 
(95% CI) 

AUC-PR  
(95% CI) 

Sex  
  

Male (N=1159) 0.101 (0.096, 0.105) 0.876 (0.868, 0.885) 0.697 (0.676, 0.719) 

Female (N=690) 0.096 (0.090, 0.102) 0.887 (0.876, 0.898) 0.694 (0.661, 0.726) 

Age Quintiles    

18-55 (Q1; N=370) 0.109 (0.102, 0.118) 0.889 (0.875, 0.902) 0.769 (0.739, 0.799) 

55-64 (Q2; N=370) 0.105 (0.097, 0.112) 0.883 (0.871, 0.895) 0.723 (0.691, 0.752) 

64-72 (Q3; N=369) 0.100 (0.092, 0.109) 0.874 (0.857, 0.890) 0.679 (0.638, 0.724) 

72-79 (Q4; N=370) 0.094 (0.085, 0.103) 0.859 (0.839, 0.878) 0.593 (0.544, 0.643) 

79-98 (Q5; N=370) 0.084 (0.075, 0.093) 0.864 (0.842, 0.886) 0.546 (0.477, 0.612) 

Abbreviations: Q1-5, quintiles 1 through 5; N, number; AUC-ROC, area under the receiver operating characteristic 
curve; AUC-PR, area under the precision recall curve; CI, confidence interval. 
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Supplemental Table B-9. Internal performance metrics stratified by group (12-month 

model). 

Group Brier Score  
(95% CI) 

AUC-ROC Score  
(95% CI) 

AUC-PR Score  
(95% CI) 

Sex  
  

Male (N=1145) 0.138 (0.132, 0.143) 0.866 (0.857, 0.876) 0.787 (0.769, 0.807) 

Female (N=682) 0.137 (0.130, 0.145) 0.869 (0.856, 0.882) 0.780 (0.756, 0.805) 

Age Quintiles    

18-55 (Q1; N=366) 0.143 (0.134, 0.152) 0.871 (0.855, 0.886) 0.846 (0.824, 0.868) 

55-64 (Q2; N=365) 0.139 (0.130, 0.148) 0.870 (0.856, 0.885) 0.820 (0.797, 0.845) 

64-72 (Q3; N=365) 0.142 (0.131, 0.152) 0.856 (0.839, 0.876) 0.775 (0.739, 0.809) 

72-79 (Q4; N=365) 0.135 (0.124, 0.145) 0.852 (0.834, 0.870) 0.693 (0.647, 0.745) 

79-98 (Q5; N=366) 0.127 (0.116, 0.139) 0.842 (0.818, 0.864) 0.613 (0.552, 0.677) 

Abbreviations: Q1-5, quintiles 1 through 5; N, number; AUC-ROC, area under the receiver operating characteristic 
curve; AUC-PR, area under the precision recall curve; CI, confidence interval. 
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Supplemental Table B-10. External performance metrics stratified by group (6-month 

model). 

Group Brier 
(95% CI) 

AUC-ROC 
(95% CI) 

AUC-PR 
(95% CI) 

Sex 
   

Male (N=826) 0.085 (0.079, 0.091) 0.887 (0.874, 0.898) 0.576 (0.535, 0.613) 

Female (N=530) 0.103 (0.093, 0.112) 0.858 (0.841, 0.876) 0.539 (0.481, 0.597) 

Age Quintiles    

19-57 (Q1; N=271) 0.115 (0.104, 0.129) 0.882 (0.861, 0.902) 0.698 (0.644, 0.750) 

57-68 (Q2; N=271) 0.111 (0.100, 0.123) 0.859 (0.836, 0.881) 0.532 (0.462, 0.607) 

68-75 (Q3; N=271) 0.087 (0.075, 0.098) 0.857 (0.831, 0.881) 0.482 (0.400, 0.565) 

75-83 (Q4; N=266) 0.078 (0.066, 0.089) 0.861 (0.835, 0.888) 0.444 (0.362, 0.524) 

83-100 (Q5; N=277) 0.061 (0.050, 0.071) 0.854 (0.814, 0.889) 0.356 (0.246, 0.466) 

Cohorts    

KGH, Kingston 
General Hospital 
(N=1033) 

0.098 (0.091, 0.104) 0.860 (0.847, 0.872) 0.529 (0.491, 0.568) 

UHN, University 
Health Network 
(N=323) 

0.070 (0.059, 0.080) 0.919 (0.902, 0.936) 0.675 (0.610, 0.730) 

Abbreviations: Q1-5, quintiles 1 through 5; N, number; KGH, Kingston General Hospital; UHN, University Health 
Network Toronto; AUC-ROC, area under the receiver operating characteristic curve; AUC-PR, area under the precision 
recall curve; CI, confidence interval. 
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Supplemental Table B-11. External performance metrics stratified by group (12-month 

model). 

Group Brier Score  
(95% CI) 

AUC-ROC Score  
(95% CI) 

AUC-PR Score  
(95% CI) 

Sex  
  

Male (N=783) 0.126 (0.117, 0.135) 0.874 (0.858, 0.888) 0.751 (0.721, 0.780) 

Female (N=505) 0.138 (0.126, 0.149) 0.872 (0.853, 0.890) 0.779 (0.733, 0.831) 

Age Quintiles    

19-57 (Q1; N=258) 0.147 (0.133, 0.161) 0.87 (0.848, 0.892) 0.829 (0.793, 0.862) 

57-68 (Q2; N=257) 0.143 (0.126, 0.159) 0.866 (0.840, 0.895) 0.759 (0.692, 0.829) 

68-75 (Q3; N=258) 0.134 (0.118, 0.150) 0.867 (0.840, 0.896) 0.797 (0.750, 0.837) 

75-82 (Q4; N=257) 0.123 (0.109, 0.139) 0.845 (0.815, 0.875) 0.686 (0.622, 0.747) 

82-100 (Q5; N=258) 0.098 (0.084, 0.113) 0.86 (0.824, 0.893) 0.480 (0.361, 0.594) 

Cohorts    

KGH, Kingston 
General Hospital 
(N=982) 

0.138 (0.130, 0.146) 0.856 (0.843, 0.870) 0.744 (0.715, 0.775) 

UHN, University 
Health Network 
(N=306) 

0.098 (0.085, 0.110) 0.915 (0.894, 0.937) 0.797 (0.739, 0.846) 

Abbreviations: Q1-5, quintiles 1 through 5; N, number; KGH, Kingston General Hospital; UHN, University Health 
Network Toronto; AUC-ROC, area under the receiver operating characteristic curve; AUC-PR, area under the precision 
recall curve; CI, confidence interval. 
 

 

 

 

 

 

 

 



159 

 

 

Supplemental Table B-12. Cumulative % of unplanned dialysis patients for which an alert 

was triggered by time period (6-month model; internal evaluation). 

 Time to Dialysis Event (months) 

 >=15 >=12 >=9 >=6 >=3 >=0 

Total UD 
Patients 
(95% CI) 

46.4 (41.6, 
51.3) 

56.3 (51.7, 
61.1) 

64.1 (59.2, 
68.6) 

74.2 (70.0, 
78.2) 

85.5 (82.1, 
88.7) 

100.0 (100.0, 
100.0) 

Detected 
with 60% 
Precision 
(95% CI) 

4.6 (2.6, 6.8) 8.8 (6.1, 11.6) 11.7 (8.6, 14.9) 18.7 (14.9, 
22.4) 

31.8 (27.4, 
36.1) 

57.5 (53.0, 
62.2) 

Detected 
with 70% 
Precision 
(95% CI) 

1.6 (0.6, 3.0) 4.1 (2.4, 6.1) 5.8 (3.8, 8.1) 9.9 (7.2, 12.9) 20.1 (16.5, 
23.9) 

45.8 (41.1, 
50.5) 

Detected 
with 80% 
Precision 
(95% CI) 

0.5 (0.0, 1.2) 1.1 (0.2, 2.2) 2.7 (1.2, 4.3) 4.6 (2.7, 6.7) 9.7 (7.2, 12.5) 29.7 (25.5, 
34.1) 

Abbreviations: UD, unplanned dialysis; CI, confidence interval. 
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Supplemental Table B-13. Cumulative % of unplanned dialysis patients for which an alert 

was triggered by time period (12-month model; internal evaluation). 

 Time to Dialysis Event (months) 

 >=15 >=12 >=9 >=6 >=3 >=0 

Total UD 
Patients 
(95% CI) 

46.4 (41.8, 
51.1) 

56.3 (51.9, 
60.6) 

64.1 (59.4, 
68.5) 

74.2 (70.2, 
78.2) 

85.5 (82.0, 
88.6) 

100.0 (100.0, 
100.0) 

Detected 
with 60% 
Precision 
(95% CI) 

22.5 (18.8, 
26.4) 

29.6 (25.4, 
34.0) 

39.3 (34.7, 
44.0) 

50.8 (46.1, 
55.4) 

64.4 (59.9, 
69.0) 

85.8 (82.5, 
89.3) 

Detected 
with 70% 
Precision 
(95% CI) 

10.8 (7.9, 14.0) 16.7 (13.2, 
20.4) 

23.2 (19.0, 
27.5) 

35.4 (30.8, 
40.2) 

48.1 (43.4, 
52.9) 

72.9 (68.7, 
77.2) 

Detected 
with 80% 
Precision 
(95% CI) 

3.7 (1.9, 5.6) 8.1 (5.6, 10.6) 12.4 (9.4, 15.7) 18.9 (15.1, 
22.7) 

30.6 (26.1, 
35.2) 

53.6 (48.8, 
58.7) 

Abbreviations: UD, unplanned dialysis; CI, confidence interval. 
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Supplemental Table B-14. Cumulative % of unplanned dialysis patients for which an alert 

was triggered by time period (6-month model; external evaluation). 

 Time to Dialysis Event (months) 

 >=15 >=12 >=9 >=6 >=3 >=0 

Total UD 
Patients 
(95% CI) 

50.0 (43.1, 
57.4) 

57.6 (50.3, 
64.9) 

65.7 (59.0, 
72.4) 

75.5 (69.3, 
81.9) 

88.0 (83.4, 
92.3) 

100.0 (100.0, 
100.0) 

Detected 
with 60% 
Precision 
(95% CI) 

4.4 (1.7, 7.4) 6.0 (2.8, 9.4) 11.9 (7.4, 16.6) 15.1 (9.9, 20.6) 28.1 (21.6, 
34.5) 

46.7 (39.3, 
54.3) 

Detected 
with 70% 
Precision 
(95% CI) 

1.1 (0.0, 2.9) 3.2 (1.1, 5.9) 5.4 (2.5, 8.7) 9.2 (5.3, 13.5) 18.9 (13.0, 
24.9) 

37.5 (30.3, 
44.8) 

Detected 
with 80% 
Precision 
(95% CI) 

1.1 (0.0, 2.9) 1.7 (0.0, 3.6) 2.7 (0.6, 5.2) 4.3 (1.6, 7.5) 9.7 (5.6, 14.0) 23.3 (16.8, 
29.8) 

Abbreviations: UD, unplanned dialysis; CI, confidence interval. 
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Supplemental Table B-15. Cumulative % of unplanned dialysis patients for which an alert 

was triggered by time period (12-month model; external evaluation). 

 Time to Dialysis Event (months) 

 >=15 >=12 >=9 >=6 >=3 >=0 

Total UD 
Patients 
(95% CI) 

50.2 (42.8, 
57.7) 

57.7 (50.6, 
64.6) 

65.9 (58.9, 
72.6) 

75.6 (69.2, 
81.4) 

88.0 (83.2, 
92.5) 

100.0 (100.0, 
100.0) 

Detected 
with 60% 
Precision 
(95% CI) 

18.6 (13.1, 
24.9) 

26.2 (19.5, 
32.6) 

33.8 (26.9, 
40.6) 

44.7 (37.1, 
52.2) 

56.0 (48.8, 
63.6) 

75.1 (68.9, 
81.0) 

Detected 
with 70% 
Precision 
(95% CI) 

12.1 (7.8, 17.1) 16.4 (11.3, 
22.1) 

21.9 (15.9, 
27.9) 

30.7 (23.6, 
37.8) 

44.7 (37.2, 
52.6) 

61.1 (53.8, 
68.5) 

Detected 
with 80% 
Precision 
(95% CI) 

6.0 (3.1, 9.9) 7.6 (4.1, 11.7) 13.7 (8.7, 18.9) 19.1 (13.3, 
24.9) 

29.4 (23.0, 
36.0) 

47.5 (40.0, 
54.5) 

Abbreviations: UD, unplanned dialysis; CI, confidence interval. 
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Supplemental Table B-16. Confusion tables obtained from external validation (6-month and 

12-month model). 

6-Month (70% Precision a) 12-Month (70% Precision a) 

  Predicted   Predicted 
  False True   False True 

A
ct

ua
l False 8597 

TN 
405 
FP 

A
ct

ua
l False 6026 

TN 
866 
FP 

True 931 
FN 

657 
TP True 937 

FN 
2091 

TP 

a: Threshold is determined from internal validation results. 
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Supplemental Figure B-1. Visualization of prediction variability as a function of model 

confidence. 

 

 

 

 

 

 

 

 

(A) 6-month model, and (B) 12-month model prediction variability as a function of model confidence. The mean and 
standard deviation of predictions obtained over 1,000 Monte Carlo samples for each of the examples in the hold-out 
test set is plotted. The standard deviations are plotted against the model confidence, defined as the absolute of the 
difference between 0.5 (50%) and the model prediction. Annotated are the 75, 50 (median), and 25 percentiles of the 
distribution. 
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Supplemental Figure B-2. Visualization of prediction variability for selected laboratory 

features (6-month model). 

 

 

 

 

 

 

 

 

 

For each example (follow-up visit) in the hold-out test set, laboratory features were randomly perturbed with noise using 
Monte Carlo sampling. The procedure was repeated for both of the selected laboratory features, (A) creatinine, and 
(B) urine albumin-to-creatinine ratio (ACR). Each column in either of the figures represents 1,000 perturbations of the 
same test example. Within each column, data are sorted according to the applied noise, and in certain cases show how 
the applied variation can shift a prediction from positive (red), to negative (blue), and vice-versa. Each example (column) 
is sorted in the x-axis according to the original laboratory value associated with that example, showing how different 
ranges of laboratory values correlate with model output. 
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Supplemental Figure B-3. Visualization of prediction variability for selected laboratory 

features (12-month model). 

 

 

 

 

 

 

 

 

 

For each example (follow-up visit) in the hold-out test set, laboratory features were randomly perturbed with noise using 
Monte Carlo sampling. The procedure was repeated for both of the selected laboratory features, (A) creatinine, and 
(B) urine albumin-to-creatinine ratio (ACR). Each column in either of the figures represents 1,000 perturbations of the 
same test example. Within each column, data are sorted according to the applied noise, and in certain cases show how 
the applied variation can shift a prediction from positive (red), to negative (blue), and vice-versa. Each example (column) 
is sorted in the x-axis according to the original laboratory value associated with that example, showing how different 
ranges of laboratory values correlate with model output. 
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Supplemental Figure B-4. SHAP summary plot (6-month model). 
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Supplemental Figure B-5. SHAP summary plot (12-month model). 
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