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Abstract 

The use of artificial intelligence (AI) for detection of lesions has been proposed to 

aid clinicians in detection tasks. However, before AI can be used clinically, the limits of 

detection must be studied to characterize AI performance. In this work, a library was 

constructed containing well-characterized spherical synthetic lesions in real positron 

emission tomography (PET) and x-ray computed tomography (CT) patient data, which 

had been previously reported free of lesions by expert physicians. These lesions were 

manually defined and automatically synthesized using the Lesion Synthesis Toolbox 

(LST). This library was used to study two FDG PET lesion-detection AI algorithms by 

their ability to detect lesions by size and intensity metrics, including lesion intensity, 

contrast, and contrast-to-noise ratio. The work demonstrates the utility of synthetic 

lesions for characterizing the limits of detection of AI and necessary tools available to 

other researchers. 
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Chapter  1: Introduction 

Cancer is a leading cause of death in Canada and globally. Around 2 out of 5 

Canadians are expected to develop cancer in their lifetime and 1 out of 4 Canadians are 

expected to pass away from cancer. [1] Although these numbers are high, the rate of 

deaths has been declining since 1988 due to developments in cancer detection and 

treatment. Detection techniques for cancer include blood tests, biopsies, and various 

imaging modalities. Nevertheless, cancer is notorious for being difficult to detect and can 

grow undetected for years before symptoms show. Once cancer metastasizes, different 

treatment modalities need to be applied for optimal outcomes. Therefore, detection of 

small lesions associated with early disease and metastases is critical.  

Positron emission tomography (PET) has distinguished itself as a highly sensitive 

imaging modality for detection of many types of cancer due to high lesion to background 

contrast. High lesion contrast is enabled by radioactive tracers that target and accumulate 

in tissues with functions specific to each tracer. As PET technologies continue to evolve, 

smaller lesions can be detected due to increase in image spatial resolution, increase in 

signal sensitivity, improved image reconstruction algorithms, and recently the use of 

artificial intelligence (AI) to assist the physician in detecting lesions. However, 

comparing these technologies, and the performance of human observers, is challenging. 

Furthermore, a large library of ground truth lesion data, needed to complete this task, is 

difficult to acquire given current methodologies, either due to lack of realism or the large 

amount of time required for clinicians to allocate to this task.  

In this work a new paradigm is proposed and explored for examining and 

characterizing the limits of detection of lesions. Using in-house developed software 



Limits of Lesion Detection of AI in PET 

Q. de Bourbon, 2023 2 

named the Lesion Synthesis Toolbox (LST), well characterized artificial lesions were 

inserted into the raw PET data of real patients. The raw form data are then reconstructed 

to generate images in which the lesions are synthesized in a realistic manner. These 

images, in which the location, size, and intensity of the lesions are known, was then used 

to test the limits of lesion detection of two externally developed AI algorithms.  

Chapter 2 delves into the background of PET imaging, including physics, image 

reconstruction, and clinical use. It also expands on lesion detection by human and AI 

observers.  

Chapter 3 begins with a discussion on experimental models for characterizing 

lesion detection, follows with a justification of the motivation for generating well 

characterized synthetic lesions, and concludes with the description of the LST and its 

critical features. 

Chapter 4 describes a perception study to characterize the limits of detection of 

two AI algorithms. It explains the methods and analysis involved in characterizing these 

AI algorithms using LST generated images to test the AI and the corresponding ground 

truth to score the AI responses. 

Chapter 5 concludes with a discussion of the AI detection results and 

characterization, as well as possible future directions for this work. 

1.1 Statement of Originality 

In this thesis I built upon previous work by Hanif Gabrani-Juma and Ran Klein. I 

added functionality to the Lesion Synthesis Toolbox including: 

- Creation of blobby spheres for realistic looking lesions. 
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- Addition of the ‘retrieve lesions’ tool to bring back simulations to the ‘define 

lesion’ sub-tab for modification, to enhance workflow when creating large 

lesion libraries. 

- Creation of the toolbox user manual, included in the appendix. 

- Testing, debugging, and updating of the toolbox, including creating a new 

logo and general bug fixes.  

- Enhancement to the ground truth file generated by the toolbox to include more 

lesion and background activity parameters and patient information. 

Throughout this process, Ran Klein supervised my work and contributed to some 

of the functionality updates explained in Chapter 3. The updated toolbox was made as an 

open-source repository on Github to be used by other researchers.  

In addition to the functionality updates to the toolbox, I created the library of 

synthetic lesions by manually defining lesions in a variety of patients. This library was 

created for this project and to be shared as an open-source library. I was responsible for 

selecting patients that were clear of disease by reading the physicians reports and verified 

that the scans appeared normal using a clinical image viewer (HERMES Medical 

Solutions, Stockholm, Sweden) before downloading the raw image data. After the library 

was created, I was also responsible for verifying that the lesion insertion worked as 

intended and removed any studied containing lesion artifacts. 

Finally, I handled all aspects of the AI limits of detection characterization 

(Chapter 4), including engaging participating sites, distributing the lesion library, 

aggregating the AI results, and analyzing the responses. The sole exception was the 

implementation of the psychophysical model which was assisted by Ran Klein. 
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This work led to an oral presentation at the Canadian Association of Nuclear 

Medicine conference, held in Ottawa in October 2023. [2] Furthermore, a manuscript was 

created to be submitted to peer-reviewed publication using sections of Chapters 3-5. 
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Chapter  2: Background 

2.1 Principles of PET 

Positron Emission Tomography (PET) is a medical imaging technique that uses 

positron-emitting isotopes to image physiologic function in the body. This method can be 

used in oncology for detecting and classifying cancer, cardiac imaging for myocardial 

perfusion, and brain imaging for detecting Alzheimer’s disease and localizing seizures, to 

name a few applications. [3] Due to its proficiency, PET has been growing exponentially 

in its diagnostic use since the early 2000s. 

2.1.1 Positron Emission 

During positron emission, also known as β+ decay, a proton from an unstable 

nucleus decays into a neutron, releasing a positron and a neutrino with respective kinetic 

energies. A positron (e+) is the antiparticle of an electron, meaning it has the same mass 

as an electron but with a positive charge. When a positron is emitted during β+ decay, the 

positron will travel through the neighboring medium, losing kinetic energy, until it 

encounters and combines with an electron, briefly forming positronium, before their 

mutual annihilation. During this annihilation event, the masses of the particles are 

converted into energy, according to conservation of energy, momentum, and charge, 

creating two antiparallel (nearly) colinear photons with energies of 511 keV each. The 

positron emission and annihilation processes are displayed in Figure 2.1. As an imaging 

device, PET is designed to detect these 511 keV photons in close coincidence. 
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a)  

b)             c)  

Figure 2.1: The nuclear processes involved in positron emission, a) positron emission from an 

unstable nucleus, and positron-electron annihilation b) before and c) after annihilation. 

2.1.2 Radiotracers 

For nuclear medicine testing, a patient is administered with a radioactive tracer 

that decays within the patient’s body. These tracers can be administered by inhalation 

(e.g., for ventilation scans), taken orally (e.g., for gastric or thyroid testing), or most 

commonly by intravenous injection. Radioactive tracers can be a single element but are 

typically bound to another molecule by replacing a section of the molecule with a 

radioactive isotope. When these radioactive molecules enter the body of the patient, they 

are treated similarly to how the original molecule would be treated in the body. 

Consequently, these radiotracers accumulate in regions of the body with high uptake of 

the original molecule. There is a wide variety of radiotracers used in nuclear imaging, 

each targeting different organs or physiologic processes, depending on the type of disease 

that is being detected. Some common tracers used in PET imaging include 18F-prostate 

specific membrane antigen (PSMA), 68Ga-PSMA, and 11C-Chlorine for prostate cancer, 

82RbCl and 15O-water for myocardial perfusion, and 18F-Fluorodeoxyglucose for cancer 

and glucose metabolism. 
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The most commonly used radioisotope in PET is Fluorine-18, which has a half-

life of 110 minutes. This isotope may be bound to a glucose-like molecule, where one of 

the hydroxyl groups is replaced by the radioactive 18F atom, creating a compound called 

Fluorodeoxyglucose (FDG). [4] When FDG enters the body, it is treated similarly to 

glucose. [5] However, when it enters the cell, it cannot be completely metabolized due to 

the missing hydroxyl group and therefore accumulates in the cell. This creates 

concentrated regions of positron emitting isotopes in regions of high glucose uptake. 

Regions of high uptake in the body include the brain, regions of inflammation, many 

types of tumors, and occasionally the heart, in cases of high insulin and low fatty acids in 

the body. There is moderate uptake in regions such as the liver, spleen, and thyroid. As 

blood is filtered through the kidneys, FDG is filtered out of the body through the urinary 

system, creating accumulation in the kidneys and bladder.  Malignant tumors are FDG 

avid because their cells reproduce quickly; faster than vessels can develop to supply 

blood to match their oxygen need. Glucose provides an energy source to cancerous cells 

that are starved for oxygen. Figure 2.2 demonstrates FDG uptake in normal and abnormal 

scans, with a high intensity lesion in the upper abdomen of the abnormal scan. When 

FDG is administered to the patient, the patient must wait an hour for the isotope to 

accumulate in the target sites and wash out from background tissues to produce a high 

contrast image. The relatively long half-life of 18F allows the tracer enough time to 

accumulate in the body while also maintaining enough activity to be detected. It also 

allows enough time to transport the tracer over a range of several hundred kilometers 

from the source of production. On the other hand, the radioisotope decays quickly enough 
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so that the patient isn’t radioactive for too long, limiting the dose to both the patient and 

those around them. 

a)     b)  

Figure 2.2: FDG PET scans showing a) normal and b) abnormal results. The abnormality is 

manifested as a high intensity (bright white) region in the upper abdomen, consistent with a 

cancerous growth. 

The amount of radiotracer administered to the patient depends on several factors 

including patient size, type of tracer, sensitivity of the imaging equipment, and clinical 

considerations that include duration of image acquisition, radiation dose to the patient 

and image quality. FDG activity is typically adjusted by patient mass, on the order of 2 to 

5 MBq per kilogram of patient mass. Variations in patient mass and administered dose 

makes quantitative comparison of FDG uptake between patients difficult. The standard 

uptake value (SUV) is used as a measure of FDG activity to compensate for variations 

between patients. SUV values are dimensionless with the assumption that 1 ml of tissue 

weighs 1 g. The equation to calculate the SUV is shown in Equation 2.1 below, where r is 
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the image sampled activity concentration (kBq/ml), a’ is the injected FDG activity (kBq), 

and w is the patient weight (g). [6] Not shown in the equation, is that radioisotope decay 

between activity measurement and scan time must also be applied. 

 𝑺𝑼𝑽 =
𝒓

(𝒂′ 𝒘⁄ )
     Equation 2.1 

2.1.3 PET Instrumentation 

After the radiotracer has accumulated in the body, the patient is imaged. Only a 

small percent of the annihilation photons from the radiotracers in the body will make it 

out of the patient and be detected by the PET instrumentation, while the rest are 

attenuated and absorbed within the body or are released in a range outside of the PET 

detectors. 

A typical PET scanner is comprised of stacked rings of specially designed 

detectors. The patient is located on a bed inside the ring of detectors that is moved 

through the ring over several minutes, to collect data for a given range, typically either 

‘eyes-to-thighs’ or ‘head-to-toe’. For a full body scan, the duration of the acquisition 

process is in the range of 10-30 minutes, depending on the scanner and time of detection 

per bed position. The typical time per bed position for FDG scan is in the range of 1-5 

minutes. Some modern PET systems have long detectors that can perform a full body 

scan in one bed position, which can greatly reduce the time needed to image a patient. [7] 

These long detectors also increase the sensitivity of the scanner, so that less radiotracer 

activity needs to be administered to the patient, which reduces the radiation dose to the 

patient.  

The detectors consist of a scintillation crystal, which converts high energy 

photons into lower energy light that can be detected by highly sensitive electronics, such 
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as a photomultiplier tube (PMT). [5] When light enters the PMT, it travels to and deposits 

its energy on a photocathode layer that subsequentially releases a few photoelectrons. If 

the electron has enough energy, it escapes the photocathode and travels through an 

electric field to the first dynode, which when hit will produce more secondary electrons, 

thus amplifying the electrical current. This effect cascades through a series of dynodes to 

create an amplification of electrons. At the final dynode (anode) the electrons are 

collected and output as an electrical signal to be passed on to additional circuitry before a 

digital signal is stored in a computer, encoding the photon detection event. Newer models 

of PET scanners are veering away from using PMTs and towards silicon 

photomultipliers, which work using photodiodes, producing higher quality signals, better 

system integration and the possibility of operating in strong magnetic fields as would be 

present in hybrid PET and magnetic resonance imaging (MRI) machines.  

Moreover, the signal amplitude from the detector encodes the energy deposited in 

the scintillator by the incident photon. As the photon interacts with the scintillation 

material, it transfers its energy to the scintillator atom via the photoelectric effect scatter 

(~30 photons per keV absorbed using in LYSO crystal).[8] As electrons fill the ionization 

holes, they fluoresce lower energy photons in the blue light spectrum. Thus, the full 

absorption of a 511 keV photon produces tens of thousands of incident photons. PMTs 

and photodiodes produce and electrical signal proportional to the amount of light output 

from the scintillator. Electronic processing of the signal uses energy discrimination 

windows to eliminate background radiation, as well as photons that have lost a significant 

amount of energy from scatter, to limit noise in the collection process.  
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Since positron-electron annihilation creates two colinear photons, the detectors’ 

signals are analyzed to detect coincident events within a narrow time window, to keep 

only the measurements from the same annihilation event and limit the number of random 

coincident events. Using the location of the two detectors that measured a coincident 

event within the given energy and time range, a line of response (LOR) can be drawn 

between the two detectors. The detection of two colinear photons is displayed in Figure 

2.3. 

 

Figure 2.3: Schematics of a ring detector with coincidence detection demonstrating how the line of 

response is drawn between the activated detectors after an annihilation event. 

On high-end PET systems, the time difference between the first photon and 

second photon hitting their respective detectors is known as the time of flight (TOF). [4] 

TOF can be used to measure approximately how far along the LOR the annihilation event 

occurred, creating more accurate measurements of the event location. The data collected 

by the PET scanner are stored in a sinogram, which contains projection histograms for 

each angle around the patient with the displacement from the center and can include TOF 

information.  

The PET system used in the context of this thesis is the GE Healthcare Discovery 

710 PET/CT scanner (D710), which was installed at The Ottawa Hospital (TOH) in 2014. 
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This scanner’s detectors are comprised of lutetium-yttrium-orthosilicate (LYSO) crystals 

and PMTs enabling time of flight data acquisition, with timing resolution of 560 ps, 

coincidence window of 4.9 ns, and an energy window of 425-650 keV. [9] Reconstructed 

image spatial resolution is maximum ~4.5 mm. [10] The detector ring has a diameter of 

81 cm, patient port of 70 cm, and axial field-of-view (FOV) of 15.7 cm. [11] With 

multiple bed acquisition the scanner range is up to 200 cm. At TOH, the time per bed 

position is 105 s, typically with 8 beds in an eyes-to-thighs scan, and 11 beds in a full 

body scan. For an FDG PET scan, the patient receives an effective dose of around 7 mSv. 

[12] 

As with most modern PET systems, the D710 also contains a 64-slice diagnostic 

x-ray computed tomography (CT) machine. The CT is used for anatomical localization 

when co-registered with the PET image, and for applying corrections during the PET 

image reconstruction. An example image with registered PET and CT is shown in Figure 

2.4, with the PET image in colour to indicate regions of high activity, and CT displaying 

anatomical features.  
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a)  b)  c)  

Figure 2.4: Patient images in the format of a) PET, b) CT, and c) co-registered PET/CT. 

2.1.4 X-Ray Computed Tomography (CT) 

CT imaging is an anatomical imaging modality. It uses a series of x-rays from 

different angles around the patient and scanned through the body to reconstruct a 3D 

attenuation map of different tissues in the patient. [13] When CT is used in the case of 

PET, it is used for attenuation correction of the PET image, as well as providing an 

anatomical map to localize physiologic features to the anatomy and better visualize the 

image. Since it is used as an accompanying image, the CT is usually acquired in a low 

dose mode (low x-ray tube current) and is not diagnostic, meaning that the quality of the 

image is lower than a regular CT scan and may not be used for all radiological 

interpretations. [14] This allows the radiation dose to be lower for the patient. For a chest 

scan, a diagnostic CT has an average effective dose of 7 mSv, whereas the low-dose CT 

has an average effective dose of 1.5 mSv. [15] On the Discovery 710 scanner, a whole-

body low-dose CT scan has an effective dose of 3.2 mSv. [16]  

2.1.5 Image Acquisition 
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Patients are required to follow a specific set of instructions to prepare for their PET study. 

In the case of FDG for PET imaging this includes fasting for 6 hours, no vigorous 

exercise for 48 hours prior to their appointment and especially in diabetics, ensuring that 

their blood glucose levels are sufficiently low - often using insulin. [12] At the time of 

their appointment, patients are administered FDG by venous injection, according to the 

patient’s mass, with 4.99 MBq/kg in the case of TOH Regional Cancer Centre, to a 

maximum of 444 MBq. [12] Patients are to kept warm, and have limited movement, to 

prevent muscle uptake. Furthermore, patients are asked to hydrate and void prior to their 

study to encourage washing out of FDG through the urine to reduce patient dose and to 

reduce high intensity interference from the bladder. At 1-hour post-injection, patients are 

required to void and remove any metal objects before being imaged. The patient is 

imaged using CT according to the parameters in  

Table 2.1. Immediately after the CT, the patient is imaged using PET according to 

the parameters in Table 2.2. After acquisition of the PET data, images are reconstructed 

on the console in several minutes, using the PET reconstruction parameters in Table 2.3. 

Scans are verified by technologists, checking for mis-registration of the CT and PET 

images (e.g., due to patient motion), artifacts, or data loss. On occasion, parts of the scan 

are repeated; for example, of the head, if patient motion has resulted in PET/CT 

misregistration.  
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Table 2.1: CT Acquisition parameters [12] 

Parameter Value 

Mode Helical 

Rotation time 0.9 s 

Rotation length Full 

Detector axial coverage 40 mm 

Helical thickness 3.75 mm 

Pitch 0.984:1 

Bed axial speed 39.37 mm/rotation 

kV 120 

mA Auto 

Reconstruction algorithm Q.Ac WideView 

Recon mode Full 

ASiR (iterative reconstruction) None 

Reconstructed radial field of view 70 cm 

 

Table 2.2: PET acquisition parameters [12] 

Parameter Value 

Mode Static 

VPFX (Time of flight) Yes 

Bed motions Step and shoot 

Scan duration 1.75 min/bed position 

 

Table 2.3: PET reconstruction parameters [12] 

 

2.1.6 Image Reconstruction 

The simplest way to reconstruct an image from a sinogram is to simply 

superimpose the projections from their respective angles. This analytical method, known 

Parameter Value 

Reconstruction method Q.Clear 

Beta 550 

Z-axis filter Standard 

Matrix size 192 x 192 

Radial field of view 70 cm 
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as back projection, is susceptible to blurring, and cannot incorporate accurate corrections 

of the imaging physics, so it is no longer used clinically. [5] Filtering can be applied 

when superimposing projections to limit blurring, known as filtered back projection 

(FBP), however, this simplistic technique produces low quality images as it cannot fully 

account for all aspects of the imaging process, including measurement noise, time-of-

flight data, 3D PET geometry and motion. Contemporarily, iterative image reconstruction 

methods are used clinically with machine-learning approaches showing promise in the 

research setting.  

Iterative image reconstruction methods use an estimate of the image, which is 

used to calculate projection data, and then compared with the measured projection data. 

After each iteration, the estimate is updated, the projection data are calculated, and the 

data are compared. During the projection calculation, physical effects can be modeled 

and therefore corrected for in the final reconstruction. Once the calculated and measured 

projection data converge (or after a certain number of iterations), the estimated image is 

now the reconstructed image.  

2.1.6.1 Corrections 

For accurate image reconstruction, corrections must be made to account for 

physical phenomena that may impact the quality of the signal measured by the device. 

These corrections include detector efficiency/normalization, attenuation of tissues, 

random coincident events, and photon scatter, to name the most common.  

Detectors have inherent variations due to manufacturing variations and 

differences in geometry with respect to the activity distribution in the scanner FOV. The 

efficiency of the detector for measuring photons of different energies, angles, and 
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locations can be assessed by imaging a uniform source and/or by modelling. Efficiency is 

measured by the system during a calibration scan performed periodically (e.g., performed 

monthly or quarterly) or after any major repair to the system. The corrections are then 

applied during image reconstruction to compensate for these non-uniformities. 

Another correction that must be made for the detector is the dead-time correction. 

[5] When a detector receives a signal, there is a brief time period afterwards when the 

detector is unable to detect another event. The correction can be done using system 

modelling. Dead-time correction becomes increasingly important with higher activity in 

the field of view, as the probability of near events (in time) can lead to greater event 

count loss. 

The attenuation of photons in a medium depends not only on the material but also 

on the energy of the photon. For PET, photons have an energy of 511 keV, at which the 

most prominent type of interaction is Compton scattering. [17] Compton scattering 

causes photons to lose energy and changes their direction of travel through interactions 

with other particles in the body. The CT image is used to measure attenuation in the field 

of view and then derive a correction associated to the different tissues in the patient. It is 

worth noting that CT uses much lower energy (<150 keV) and polyenergetic photons, 

thus the attenuation coefficients must be scaled to 511 keV for PET attenuation 

correction. Since a PET measurement requires two photons detected coincidentally, the 

probability of both photons making it out of the patient depends on the whole length of 

the patient and isn’t dependent on where on the LOR the event occurred. This makes it 

significantly easier to correct for attenuation in PET compared to single photon emission 
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computed tomography (SPECT), which has long been an important differentiator 

allowing for accurate quantification of activity concentrations with PET.  

As mentioned above, photons can scatter when interacting with the patient. These 

scatter events cause the photon to lose energy, hence they can be accounted for by 

removing coincident events that are outside an energy window around 511 keV. [5] The 

upper limit of the energy window is larger than 511 keV (around 600 keV) to account for 

the limited energy resolution of the detectors (~10%), however the upper energy window 

is not much higher so as to reject more than one photon interacting with the detector at 

once. Energy discrimination, however, is not a solution to scatter, as the energy 

resolution of the detectors is limited, requiring relatively broad energy acceptance 

windows. Another method to correct for scatter is by creating simulated models using 

attenuation from the CT image and/or by analysis of the emission data.  

Finally, random coincidence events create noise due to photons from separate 

decay events hitting detectors within the short time period of the coincidence time 

window. Random coincidence events are not from real annihilation events, and if left 

uncorrected, create a uniform blur in the reconstructed image. These events are purely 

random and are more difficult to account for. To correct for random events, delayed time 

windows or counting the number of single events can be used to estimate the rate of 

random events, which can then be removed from the histogram count rate prior to 

reconstruction.  

Many of the above-described effects can be performed by incorporating models of 

them into the forward projection process during the image reconstruction process. This is 

a very powerful and convenient process, as almost any physical, instrumentation, or even 
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patient related effect can be corrected for, without having to devise an inverse model to 

correct for the phenomenon. Some vendors have used this approach to include 

corrections for system point-spread function (resolution correction), respiratory motion 

correction and cardiac motion correction. [18]–[20] 

2.1.6.2 MLEM 

In order to improve reconstruction of PET images, analytical methods like FBP 

have been replaced with iterative methods such as Maximum-Likelihood Expectation-

Maximization (MLEM). MLEM uses statistical methods to limit image noise and 

artifacts, as well as apply the corrections mentioned above. [17] This technique can also 

be used with time-of-flight data, resulting in less noisy images. 

Expectation-Maximization methods iterate to calculate a distribution of estimates 

of the activity in the patient. From there, Maximum-Likelihood methods are used to find 

which estimate is most likely by comparing with the projection data, and each iteration 

brings the image closer to this estimate and finally converges to a single image. The 

advantage of using this method, as opposed to analytical methods, is the reduction of 

streaking throughout the image and an increased signal-to-noise ratio (SNR). However, 

MLEM tends to have a slow convergence, taking many iterations to achieve an image 

with both high and low frequency features. [17] Also, this technique is susceptible to 

noise with too many iterations. To avoid this, a preset number of iterations is usually 

selected that balances high quality feature delineation without excessive image noise. 

However, MLEM is not frequently used due to the high computational time that makes it 

impractical for a busy clinical setting.  

2.1.6.3 OSEM 
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Ordered-Subset Expectation-Maximization (OSEM) overcomes the limitation of 

MLEM by accelerating the reconstruction process, with little to no impact on the quality 

of the reconstructed image. [17] This technique uses the principles of MLEM but breaks 

up the data into S number of subsets of data, which are maximized separately, in 

sequence. This creates an accelerated convergence by a factor of ≤ S, as fewer projections 

need to be forward projected at each step. While in MLEM, all projections of the 

estimated image are computed by the forward projector, in OSEM, only a subset of 

projections are computed each sub-iteration. The image update and forward projector 

remain otherwise the same as in MLEM, enabling respectively, to include all the physical 

correction in the system model and to ensure robust convergence towards a best estimate 

image. The advantages of MLEM still come through in this technique, such as the 

increased SNR, however, OSEM isn’t guaranteed to fully converge to a single image. If 

noise is present in the image, then the iteration must be stopped before convergence, 

otherwise the noise is amplified. Another disadvantage to this technique is the distortion 

of small objects in the image. This is balanced by selecting a limited number of subsets 

(e.g. 8 or fewer).  

2.1.6.4 Q.Clear 

The GE Discovery scanners, one of which was used to collect data for this thesis, 

were the first to use a reconstruction algorithm called Q.Clear, that was developed by GE 

Healthcare. Q.Clear uses Bayesian penalized likelihood to suppress noise where images 

are uniform, using a relative difference penalty term, and accentuate contrast where edges 

exist. [21] The increased contrast along edges may create oscillations, called the Gibbs 

phenomenon, however, this can be minimized by increasing the image matrix 
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dimensions. [22] A beta factor is selected by the user to trade off between image 

smoothness and edge preservation. A beta value of zero ignores the Bayesian penalty and 

produces an OSEM like reconstruction. A beta value of 550 was used in this thesis, 

corresponding TOH clinical practice for FDG-PET. This algorithm is able to reach full 

convergence while maintaining image quality, and multiple studies have reported 

improved resolution, contrast, and SNR, with decreased noise, and even improved lesion 

detection. [23]–[25] Q.Clear is seen as a reconstruction method that effectively improves 

the system’s overall sensitivity. This added sensitivity can be leveraged to improve image 

quality, reduce the amount of tracer activity used, and/or to reduce imaging time, 

according to the clinic’s needs. In the case of TOH, Q.Clear was adopted to reduce image 

acquisition times, with the goal of increasing clinic throughput to match the growing 

demand for PET imaging in the region. 

2.1.6.5 Image Reconstruction in Practice 

Regardless of the method, reconstruction of PET images remains a 

computationally demanding task that can take minutes to hours on high-end dedicated 

computer hardware costing hundreds of thousands of dollars. On modern desktop 

computers, reconstruction takes several hours and up to a day. At TOH, in a clinical 

setting, reconstruction is done on the console using OSEM to produce a quick image to 

check for artifacts before the patient leaves the department and then Q.Clear 

reconstruction is queued to be completed overnight. More modern PET/CT systems are 

equipped with computing hardware that enables Q.Clear reconstruction within minutes, 

negating the need for preliminary reconstruction. As reconstruction times continue to 
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decrease, more elaborate corrections, such as respiratory motion, are increasingly being 

applied in the clinic. 

2.1.7 Artifacts 

In addition to the corrections of physical phenomena mentioned previously, there 

are other errors that can affect the quality and accuracy of PET images. Image artifacts 

are abnormalities that occur in images that are not in the original object.  

Patient movement between the PET and CT images can cause misalignment and 

attenuation correction artifacts. [26], [27] In addition, breathing can cause blurring and 

misregistration of the CT image in the chest region of the image. This results in artifacts 

such as the banana artifact, which is banana shaped region of low activity on the liver-

lung boundary. For breathing related artifacts, gated imaging can be used to reduce these 

effects. However, for gross patient motion artifacts, the technologist will often repeat the 

PET and CT image acquisition for anatomical regions that have been severely 

misregistered. 

Furthermore, CT beam hardening and photon starvation can cause streaking and 

excess noise due to high density regions. [28] This can be caused by wide regions of the 

body with boney structures, such as through the shoulders and hips, but also from metal 

implants, calcifications, or x-ray contrast media. Consequently, the PET image will 

contain artifacts from overcorrection of high attenuation objects in the CT. Filters and 

current modulation can be used to prevent beam hardening and reduce the effect of these 

artifacts. Alternatively, iterative reconstruction software containing beam-hardening 

correction can be used to limit beam-hardening artifacts.  
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2.2 Image Visualization and Lesion Detection 

A lesion is an area of damaged tissue, which can be from disease or an injury. 

This includes wounds, abscess, ulcers, and benign or malignant tumors. [29], [30] Since 

FDG is an analogue of glucose, lesions that are visible on FDG PET are typically 

malignant tumors, but benign lesions may also be seen. Tumors vary in size, from being a 

single cell to being larger than a human head. [31] Typically, larger objects are easier to 

perceive than smaller objects, however, that greatly depends on their contrast with the 

surroundings. FDG PET is no exception to this pattern. The relation between size and 

intensity relative to the ability to detect the lesion is studied in this work.  

2.2.1 Perception Versus Detection 

Clinically, lesion detection is done visually by clinicians. Ideally, clinicians use 

dedicated visualization software, using well calibrated displays, in specially designed 

reporting rooms. These are intended to create an optimal viewing environment to 

maximize the detection of disease. [32] Nevertheless, even the most well-trained clinician 

is prone to making mistakes. These errors can occur at multiple points throughout the 

disease detection process, including during perception and detection of the disease. 

Although perception and detection are often used interchangeably, they are two different 

processes. Perception is a subconscious process during which the brain takes in sensory 

information, visual in this case, and processes this information to make sense of it. 

Detection is a cognitive process during which the observer eliminates other options and 

decides that the object is in fact what they are looking for. Cognitive errors are estimated 

to account for around 15-28% of all errors in radiology, some of which are caused by 

biases. [33]  
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2.2.2 Human Errors 

During detection tasks, errors can occur during perception of objects or the 

cognition process. When scanning an image, the observer may not consciously become 

aware of an object by either completely missing the object or by perceiving it but 

subconsciously disregarding it. Errors during this phase can be studied by tracking eye 

movement of the observer and measuring the amount of time spent on each region to tell 

whether the observer perceived the object. [33] Once the observer is consciously aware of 

the object, the observer must consciously decide to detect or disregard it. Human 

perception studies have shown that there are many different types of biases that are 

prevalent in this phase, such as confirmation bias, alliterative errors, anchoring bias, and 

satisfaction of search. [33]  

Confirmation bias can occur when prior diagnostic information about the patient 

is known, causing observers to search for evidence supporting this information, and 

potentially missing other information in the process. Alliterative errors can occur if there 

were errors from a previous report that the observer takes as truth, without reviewing the 

findings, causing a continuous error. Furthermore, anchoring bias may occur when new 

information is received after an initial impression was made, but the observer does not 

adjust their prior impression based on the new information. Another common error is 

termed “satisfaction of search” in which the observer stops looking for additional 

abnormalities after initial findings. To mitigate these types of errors, readers are trained 

to systematically search the entire image space. Some have even advocated for the use of 

checklists, to guide the reader through an exhaustive search. These are just a few of the 

many types of biases when it comes to human detection. 
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2.2.3 Human Versus AI 

Although there are techniques to reduce human bias, including structured 

reporting and error review, these strategies require more human resources, which are 

already stretched thin in most clinical practices. [33] Artificial intelligence has been 

proposed as a detection tool to allow for a reduction in bias and more accurate detection. 

During detection tasks, human observers rely on experience to produce accurate 

detection, whereas AI algorithms are trained from imaging datasets. If these datasets are 

robust, machine learning algorithms have been shown capable of learning to detect a 

wide variety of diseases. However, some rare conditions may not be included in the 

training dataset, causing AI to miss these diseases, whereas a human observer might not 

miss them through the ability to rationalize. Evidently, the training dataset is crucial to 

producing a sophisticated AI algorithm.  

Moreover, test/retest discrepancies for human observers can be quite significant, 

even for highly trained clinicians, due to guesses and lapses in judgement. [34] The 

advantage of AI is that they are reproduceable and will retest with the same results.  

2.2.4 Characterization of Detection Performance 

Most commonly, detection accuracy is characterized using a validation dataset 

that has been labelled with reference ground truth of the detection outcome. The observer 

(whether human or machine) results are then compared against the ground truth. The 

results can then be summarized in a confusion matrix (see Figure 2.5) from which 

summary statistics can be calculated. The most common statistics include: [35] 
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- Sensitivity: probability of testing positive given that the ground truth is 

positive, equal to the number of true positives divided by the number of actual 

positives. Sensitivity is also referred to as recall. 

- Specificity: probability of testing negative given that the ground truth is 

negative, equal to the number of true negatives divided by the number of 

actual negatives. 

- Precision: probability of the ground truth being positive given that the test is 

positive, equal to the number of true positives divided by the number of 

predicted positives. Precision is also referred to as the positive predictive 

value. 

 

Figure 2.5: Confusion matrix for detection tasks 

In the context of this work, sensitivity looks at an observer’s performance from 

the point of view of the known ground truth lesions that were detected correctly. 

Precision, in contrast, looks at the lesions that were reported by the observer and 

evaluates which of these were actually ground-truth lesions (as opposed to mistakenly 

identified lesions). 
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In the context of lesion detection, for a given observer, these summary statistics 

may vary depending on how obvious the lesions are to detect. These statistics do not 

inform on the limits of detection with regards to the lesion characteristics. Hence, they 

make it difficult to infer how an observer will perform under conditions that are not 

represented by the validation set. For example if an observer is good at detecting 

advanced, large tumors, it is not known how well they can detect early stage, small 

tumors.  

2.2.5 Perception Models 

The ability to perceive a signal, such as lesion detection, may depend on 

numerous factors including lesion intensity, lesion size, background intensity and pattern, 

method of image display, observer proficiency, and lapses by the observer. Accounting 

for all these factors separately is challenging, thus a perception model can relate the 

likelihood of lesion detection to various lesion characteristics. When lesion 

characteristics are known, such as size and intensity, modelling can be used to extrapolate 

detection performance for values outside of tested values. The benefit of perception 

models is that they can succinctly summarize complex relationships of lesion properties 

to perception likelihood using a few parameters.[36]–[38] These parameters may then be 

used to benchmark or grade the lesion detection performance of observers.  

This concept is well studied in the psychophysical discipline where human test 

subjects are tested for their ability to detect a physical stimulus (e.g., sound intensity, 

weight, colour difference or light intensity). Low intensity stimuli may not be perceived 

by the observer, but as the stimuli increases in intensity the observer transitions towards 

increased likelihood of perception. High intensity stimuli are rarely missed. This 
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relationship is typically modelled using a sigmoid function. To our knowledge 

psychometric modeling has not been applied to characterize AI’s limits of detection with 

respect to lesion properties. 

The following chapters describe a method in which well characterized synthetic 

lesions are embedded into real clinical image data, which are then used to test AI 

observers. The observer reported lesions are then compared to the ground-truth data to 

characterize the limits of detection of the AI algorithm with regards to the lesion 

properties using a perception model. 
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Chapter  3: Lesion Synthesis Toolbox 

A major challenge to evaluating performance on the task of lesion detection using 

clinical images is the absence of reference ground truth data. Various workarounds have 

been applied to this problem. These are listed in Figure 3.1 in the context of the imaging 

process, and therefore illustrate the downstream imaging steps that can be probed for 

their impact on lesion detection. For example, Correlative imaging (e.g. magnetic 

resonance imaging) can be used to verify the presence of detected lesions, but may be 

unwarranted, as certain types of lesions may not be discernible on different imaging 

modalities. Moreover, availability of multiple imaging modalities (in close time 

proximity) is usually limited by consideration for costs, patient convenience and reducing 

the radiation dose to the patient. Another approach is to have PET images reviewed by a 

panel of expert human readers to mark lesions by consensus. This has the limitations of 

being extremely time demanding and expensive, while being limited by the performance 

of the human readers. 

Histopathology, the sampling of suspect tissues (biopsy) for laboratory testing, is 

often considered to be a definitive ground truth. However, biopsies are limited by their 

invasiveness as lesions cannot always be extracted safely and needle biopsies often miss 

or under-sample the lesion, even while using image guidance. Perhaps most importantly, 

biopsies are taken only of suspect diseases sites, which are usually defined by the very 

same imaging we want to test for limits of detection. While many biopsies are taken 

during surgery, these do not qualify for ground-truth for subsequent imaging, as at that 

point the lesion site has been excised. 
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As an alternative, ground truths can be known by using a phantom. Phantoms are 

human-made patients, usually built with plastic and other materials, mimicking the 

properties of tissues. They have known dimensions and can be injected with 

radionuclides to perform various tasks in nuclear medicine, such as quality control testing 

of imaging equipment and methods. However, they are not realistic enough to be useful 

for most lesion detection studies, as they cannot represent the wide variety of patients, 

specifically their anatomy, physiology, and differing disease manifestations. 

Consequently, lesion placement in physical phantoms tends to be predictable.  

Another method for acquiring a ground truth is by using digital phantoms, which 

are digitally modelled patients that can be fed through a computer model to create 

realistic looking image scans. These models can be simulated with noise and patient 

variability, as well as simulated instrumentation effects, to better reflect the complexities 

and uncertainties of real patient data. However, these types of simulations include many 

pitfalls. Synthetic patients are tedious, computationally demanding, lack image artifacts, 

and still do not account for all instrumentational and patient variability encountered in 

real data. Furthermore, uniform tracer concentrations in the phantom “organs” create 

unrealistic results, and pixel level realism phantoms are not readily available.  

Thus the use of real patient data is advantageous to allow for realism and 

variability in anatomy and physiology. When it comes to how to insert the lesions, there 

are several possible approaches that can be taken. In the case of animal studies, it may be 

possible to do so surgically, but this method is expensive, inhumane and does not 

accurately represent the human subject. Artificial lesions may also be placed superficially 

on human volunteers, but these don’t emulate deep tissue lesions. To overcome these 
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limitations, we sought an approach to insert synthetic lesions into real PET data in silico. 

Rather than adding them in the reconstructed images, where the effects of image 

reconstruction are difficult to model, we sought to insert the lesions into the raw data 

measured by the PET instrumentation. This allows the lesions to undergo reconstruction 

and obtain characteristics of the reconstruction parameters used. 

 

Figure 3.1: Workflow to display a medical image, with blue indicating the clinical path, orange 

indicating the path added in this project, and black indicating other methods of creating a known 

ground truth.  

This chapter describes the methods by which lesions were synthesized in PET and 

CT data and follows with a description of an in-house developed software tool for lesion 

insertion by non-expert users – the Lesion Synthesis Toolbox (LST). This chapter 

concludes by distinguishing the incremental developments performed as part of this 

thesis project to enable efficient creation of large libraries of images with synthetic 

lesions to empower researchers.  

3.1 The Lesion Synthesis Toolbox (LST) 

The LST was designed to be a standalone application that could be used by non-

technical experts to efficiently build libraries of PET/CT images with synthetic lesions 

and their corresponding ground-truth values. When the LST was created, the following 

key requirements were identified to be included in the toolbox: 

1. Importing data: the program should be able to easily import all relevant data 

directly from the imaging modality. Because the raw PET data are relatively large 
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(~1 GB per study), these data are rarely archived and are only kept on the 

modality for a limited time (several days). 

2. Data anonymization: to be able to use patient data in research, removal of 

sensitive patient identifiers is paramount. The tool must be able to remove all 

patient identifier information easily and robustly, then replace it with convenient 

study identifiers. 

3. Visualizing data: the program should allow users to easily visualize data for 

quality control of reconstructed images and to intuitively define lesions within the 

image. 

4. Realistic lesion insertion: the program should be able to insert realistic-looking 

and accurately characterized (e.g., location, size, and intensity) lesions into the 

PET data and allow lesions to undergo reconstruction with the same parameters as 

the image. Also, the reconstruction should be the same as those used clinically.  

5. Batch data: the program should be able to batch process data from a queue to 

eliminate the need for the user to supervise the program and manually start 

reconstruction jobs. 

6. Reviewing results: the program should allow users to review the results after 

lesions have been inserted and view the properties of each lesion. 

7. Organized database: the program should create an organized database for raw 

data, reconstructed images, and lesion-simulated images.  

8. Reconstruction parameters: the program should allow users to modify the image 

reconstruction parameters and allow for saved parameter options. The 
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reconstruction methods should be representative of those available in a clinical 

setting. 

9. Easy to use Graphical User Interface (GUI): the program should be intuitive for 

users to navigate without previous experience using the program. The program 

should include separate sections for data retrieval, image reconstruction, and 

lesion insertion tasks. 

10. Exporting data: the program should allow users to export the reconstructed and 

simulated images, as well as the corresponding ground truth values for the 

simulated lesions. 

11. Multiple users: the program should be able to have different users with their own 

saved data folders and project options. Since image reconstruction requires long 

processing times, in some lab settings, it may be preferable to host the program on 

a shared compute server where multiple users can queue jobs. The software 

should isolate users from interrupting each other but manage the shared 

computing resources. 

 

The LST is a tool created at the Ottawa Hospital by Dr. Ran Klein and Hanif 

Gabrani-Juma to simulate synthetic lesions in real PET/CT data, based on the above 

stated requirements. The requirements that were not met in the original creation of this 

toolbox were added as part of this project, as listed in the incremental developments in 

Section 3.3, by either the author or Dr. Ran Klein. The LST is developed in Matlab 

(MathWorks, Natick, Massachusetts), with the most current version tested on Matlab 

version 2023a. The toolbox is divided into 5 tabs, including the login, data retrieval, 

image reconstruction, lesion simulation, and configuration tabs. These tabs can be seen in 
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the user manual in Appendix A along with descriptions of each component of the user 

interface.  The toolbox GUI is  organized to be intuitive and easy to use, making use of 

common GUI elements and a top-left to bottom-right workflow common in many modern 

applications. With the further accompaniment of  the user manual, the eighth requirement 

in the list above is satisfied.  

The Data Retrieval tab allows users to import data directly from a PET/CT 

scanner and select which patients to download, satisfying the first requirement for an 

efficient toolbox. The PET/CT scanner connection can be set up in the “Configure” tab. 

Alternatively, patient data can be saved from external sources into the same directory as 

the downloaded patients. Immediately after downloading, patient data can be anonymized 

to protect patient confidentiality, satisfying the second requirement.  

On the Image Reconstruction tab, downloaded patients can be reconstructed with 

user-defined reconstruction parameters, using OSEM and Q.Clear reconstruction 

algorithms. Reconstruction on a modern desktop computer takes several hours, depending 

on computer resources and number of PET scan length (number of bed positions).  

The Lesion Simulation tab consists of 4 sub-tabs, namely “Select Patient”, 

“Lesion Insertion”, “Job Queue”, and “Review Simulation”. The “Select Patient” tab 

allows the user to view the reconstructed patient images and select one for lesion 

insertion. The “Lesion Insertion” tab (see Figure 3.2) is where lesions can be defined by 

their location, size, shape, intensity for the PET image (in either Becquerels per ml 

(Bq/cc), SUV, or relative to another reference region in the image), and intensity for the 

CT image in Hounsfield Units (HU). Reference objects can be added as well, typically in 

the liver. Once the lesions are added, the reconstruction parameters can be chosen from a 
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list of preset ones or can be manually input. These tabs satisfy the third and fourth 

requirements for an efficient toolbox.  

 

Figure 3.2: Screenshot of the lesion insertion tab from the Lesion Synthesis Toolbox 

The “Job Queue” sub-tab allows the user to view and remove simulations that are 

in the queue to be processed for generating lesion images. After simulation, the images 

can be reviewed and downloaded in the “Review Simulation” tab. The ground truth data 

can also be downloaded in this tab. In addition, lesions can be retrieved and brought back 

to the “Lesion Insertion” tab, which allows the user to repeat the same reconstruction 

using different parameters or allows for adding and removing lesions. The “Job Queue” 

and “Review Simulation” tabs satisfy the fifth, sixth, and tenth requirements for the 

toolbox.  

The Configure tab allows the user to customize settings of the toolbox. 

Administrators can configure common settings such as connections to scanner consoles 

for data retrieval and location of job queues. Individual users can configure projects that 

include locations of their image libraries, image naming conventions, default image 

reconstruction methods, where to send reconstructed images, and push notification of 
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processing progress. The “Configure” tab satisfies the seventh, eighth, and eleventh 

requirement.  

3.2 Lesion Insertion 

As mentioned previously, the “Lesion Insertion” sub-tab allows users to add 

synthetic lesions into previously reconstructed PET/CT data. The previously 

reconstructed data are only used to visualize the image, to sample activities in reference 

regions of interest and to sample background activities that inserted lesion activities must 

complement to achieve the target lesion activity. For this reason, it is preferable to first 

reconstruct the baseline image with the exact same reconstruction parameters as the 

simulation. In fact, if this is not manually done during image reconstruction, 

reconstruction with the same parameters as the simulation, will be automatically 

performed during the simulation process.  

In this work, all reconstructions were performed using the GE Healthcare, 

DUETTO package, which performs image reconstructions that are numerically identical 

to the clinical reconstructions performed by the scanner. However, the DUETTO package 

is limited to researchers in collaboration with GE Healthcare. In theory, the software is 

designed to accommodate reconstruction packages by other vendors, but this was out of 

scope for this thesis. 

Lesions are forward projected also using the DUETTO package, which estimates 

the resulting sinogram from the added lesion activity distribution. It does so using the 

same forward projector that DUETTO uses during iterative image reconstruction. [39] 

Next, the lesion sinogram is added to the image sinogram before reconstruction by 

DUETTO. This process is illustrated in Figure 3.3. 
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Figure 3.3: Flow diagram of lesion insertion into raw sinogram data and the direct addition of the 

lesion to the CT image, for realistic lesion simulation. 

The DUETTO package is numerically equivalent to the reconstructions that are 

done on the PET/CT machines, although the speed of reconstruction is typically slower 

on a computer than on the console. By inserting lesions into the sinogram space, lesions 

undergo the same reconstruction and experience the same distortion or enhancement 

effects as the measured patient data, rather than simply inserting a blurred lesion directly 

into the PET image.  

3.3 Incremental Developments 

For the Lesion Synthesis Toolbox to be used for this project and to be ready for 

distribution to researchers outside our group, the toolbox needed updated functionality 

and to undergo thorough testing. The following incremental developments were 

performed in the context of this thesis by the author and Dr. Ran Klein: 

3.3.1 Increasing Lesion Realism 

Although spherical lesions are easily characterizable with only a radius parameter, 

real tumors are rarely perfectly spherical. Therefore, blobby spheres were created as a 

way to create more realistic lesions to reflect actual patient data, as seen in Figure 3.4. 
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These lesions are defined using two parameters, the lesion size and the amount of 

‘blobby-ness’. Blobby spheres were created using a sphere with varying radius values 

determined by random numbers within a given range. The range is defined by the second 

parameter input from the user, where the input ranges from 1 to 10, where 0 would 

represent a regular sphere, and blobby spheres of 1 being the least irregular and 10 being 

the most irregular (i.e., the radii values would be: radius ± range×rand×radius/10, where 

rand is a uniformly distributed random number between 0 and 1).  

 

Figure 3.4: Examples of spheres with diameters of 15 mm, with a regular sphere on the left, followed 

by blobby spheres of parameters 1, 4, 7, and 10, respectively.  

However, as the aim of this thesis was to study the detectability of lesions, only 

spherical lesions were used in this thesis, since characterizing lesions by one shape 

parameter is ideal for this initial study of lesion perception by AI.  

3.3.2 Lesion Synthesis in CT 

As with PET, lesion synthesis in CT was also desirable to enhance realism. 

Unlike PET, for the CT, the lesions are appended directly into the reconstructed image in 

one of two modes. The first (homogenous) mode inserts the lesion with the user defined 

activity, overwriting the original voxel values. In the second (maintain texture) the 

original voxel values are sampled from the image and a complimentary, uniform, 

intensity is added to achieve the target mean value, while preserving the difference 

between voxels. The second method is preferred for realism, as it maintains realistic 

image noise characteristics. Neither method accounts for partial volume effects of the 
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lesion, hence a voxel is either in the lesion or not. In addition, a button was added to redo 

the lesion insertion in the CT images, which can be used for previously simulated files 

that do not have CT lesions or if any future adjustments are made. 

To clarify, synthetic lesions are added to the CT for visualization and analysis 

purposes, but not for PET image reconstruction corrections. Because the CT is used to 

describe the physics (i.e., attenuation and scatter) during PET acquisition, modifying the 

CT by lesion insertion could produce mismatches between these physical effects during 

image acquisition and their correction during PET image reconstruction, resulting in 

image artifacts. A copy of the unaltered, original CT must be preserved to enable future 

reconstructions and simulations. 

3.3.3 Functionality for Generating Large Datasets 

In order to create large sets of data, batch processing was added to allow users to 

add simulations to a queue and have the toolbox complete the tasks consecutively, instead 

of manually starting each simulation. Also, a retrieve lesions button was added as a way 

to bring the original file and lesion parameters of previous simulations back into the 

lesion insertion window. This allows the user to redo the simulation with different 

reconstruction parameters or edit and add new lesions. The ground truth table was 

updated to include anonymized patient information, as is described in Appendix A.  

3.3.4 Integration with Clinical Image Visualization Systems 

In order to integrate the toolbox with clinical systems such as HERMES 

(HERMES Medical Solutions, Stockholm, Sweden), a DICOM send function was added 

as a way to send reconstructed data to an external server. This is useful for visualizing 
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data using the same tools as clinicians. Files are sent in a universally used DICOM 

format, which is explained below. 

3.3.4.1 DICOM Image Format 

The PET data from the LST are saved in a DICOM format, which stands for 

Digital Imaging and Communications in Medicine. This format is the standard for 

transferring medical information and can be used across many vendors and equipment. It 

includes information structures, which in this case contains patient, image, and 

reconstruction information. [40]  

3.3.5 Knowledge Translation 

In an effort to share the LST with the scientific community, several components 

were created and updated. First, a user manual was created to allow users to have a 

reference for the functionality of the toolbox, which was updated as new functionalities 

were added. A GitHub repository containing the toolbox was updated as the toolbox was 

developed, and the user manual was added to it. Once the toolbox is ready to share, this 

repository will be used to share the toolbox and associated documentation. In addition to 

the toolbox, an open-source lesion database is in development using the lesion library, 

which is discussed in Chapter 4. 
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Chapter  4: Limits of Detection in AI 

4.1 Background 

Using the Lesion Synthesis Toolbox, a library of synthetic lesions and their 

associated ground truth values was generated. This library was then used to characterize 

the performance of two externally developed lesion-detection AI based systems in terms 

of their limits of detection (LOD). Detectability was characterized in terms of the size 

and intensity of the lesions at which the AI algorithm can reliably detect them. The 

hypothesis is that smaller and fainter lesions are more difficult to detect than larger and 

brighter lesions, with each AI algorithm having different LOD characteristics that can be 

used to objectively benchmark their performance for the clinical task of lesion detection. 

Furthermore, the AI algorithms were evaluated for the rates of falsely reported lesions, 

which were also characterized in terms of reported lesion size and local image activity.  

4.2 Methods 

This study was approved by The Ottawa Hospital Research Ethics Board 

(Protocol number 20180722-01H). The study was exempt from needing to obtain patient 

consent since it made retrospective, secondary use of patient data and the data were fully 

anonymized.  

4.2.1 Patient Data 

Routine clinical PET/CT scans from The Ottawa Hospital were selected if they 

were clinically reported as free of disease by the nuclear medicine physicians in 

definitive terms. Studies were checked on the department clinical viewing system 

(HybridViewer version 6.1.4, HERMES Medical Solutions, Stockholm, Sweden) before 

downloading data, to ensure the images were free of severe image artifacts or distortions 
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and appeared free of lesions. All images were acquired at TOH using the GE Healthcare 

Discovery 710 PET/CT scanner (Waukesha, Wisconsin, USA). All scan relevant data 

were imported to the LST directly from the PET/CT system console and immediately 

anonymized before reconstructing the images. The downloaded files included the patient 

specific raw histogram data (with time-of-flight) and reconstructed CT scans, and the 

system detector normalization, geometry correction, and calibration files. These files are 

required to perform reconstruction of the PET data using the same methods as are used 

clinically.  

All patient demographics data (e.g., age, sex, weight, height, study type) were 

extracted from the raw data header metadata. Patient gender and ethnicity were not 

captured in these as per clinical practice, nor were they considered significant for this 

research, as these are not known to be important differentiators of anatomy and 

physiology.  

4.2.2 Lesion Library  

Anonymized patient files were reconstructed in the LST using the same algorithm 

and parameters used in the clinic (see Table 2.3 in Section 2.1.5). Briefly, reconstruction 

used the Q.Clear algorithm including time-of-flight, attenuation, scatter, dead-time, 

normalization, and decay corrections. Using the reconstructed PET image, registered with 

the CT for anatomical and physiology references, synthetic lesions were manually 

defined on these images to create a library of simulated PET/CT data. A variety of well-

defined synthetic lesions were placed in anatomically realistic sites. The author reviewed 

medical images and journals to gather a list of common locations for soft tissue tumours 

before creating the library. Tumours in bone were avoided, as they had not yet been 



Limits of Lesion Detection of AI in PET 

Q. de Bourbon, 2023 43 

validated using the LST.  The goal of the library is to create an open-source database of 

images that can be used for training, testing, and studying the limits of detection for both 

human observers and AI. The library itself doesn’t contain any information on the 

location or number of the lesions to preserve objectivity of the AI developers, but the 

ground truth data were downloaded from the LST for internal use to score the AI reported 

lesions.  

A perception study had been performed previously using the LST to study limits 

of detection in human observers with varying levels of experience. [41] The experience 

from that study was used to create a baseline estimation for how small and dim lesions 

could be while still being detected by human readers of varying levels of experience. 

Using the results from that study as a guideline, the lesion library was built.  

This library consisted of 56 patients, 114 simulations, and 565 lesions. More than 

one simulation was performed for most patients using different lesions, which is why 

there is a higher number of simulations than patients. Lesions were defined with intensity 

values between 0.5 and 6 times the intensity of the liver and sizes varying between 1 and 

15 mm. Liver intensity was determined by manually placing a 20 mm radius sphere 

within a uniform region of the liver. Lesions were defined manually in the lesion 

synthesis tab of the toolbox by their location, size, shape, and PET/CT intensities. The 

process to insert reference regions and synthetic lesions is depicted in Figure 4.1.  
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a)   b)  

c)  d)  

Figure 4.1: Steps to insert a synthetic lesion into PET/CT data in the LST, a) the location of the 

reference region is set in a uniform region of the liver, b) reference object parameters are defined, c) 

lesion is set in a realistic region of the body, and d) lesion parameters are defined. 

The reconstruction parameters were selected to match those used clinically; then 

the studies were queued for synthesis. After reconstruction, the images were proofed 

using both the LST and HERMES. After processing and reviewing the library, three 

studies were removed from the library due to 1) corruption of data during information 

transfer and 2) image artifacts created from lesion insertion during image reconstruction. 

Note that the library values listed above do not include the excluded studies.  

The ground truth data were exported by the LST in a Microsoft Excel (Redmond, 

Washington) file and included table columns for the patient and simulation parameters as 

listed in Table 4.1. 
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Table 4.1: Exported Ground Truth Parameters 

Parameters Details 

Patient level 

Patient ID 

- 

Age (years) 

Sex 

Height (m) 

Weight (kg) 

Study level 

Injected Activity (MBq) - 

Simulation level 

Simulation Name 

- 
Reconstruction Profile 

Series Description 

Simulation Date 

Lesion level 

Lesion Name e.g., lung, liver, etc. 

Location Coronal (units) Units include pixels, mm from center, mm 

from origin, and relative fraction. Selected 

by user before ground truth download 

Location Sagittal (units) 

Location Transaxial (units) 

PET Intensity Mode 
e.g., Lesion: Background, Lesion:ROI, 

SUV, Bq/cc 

PET Intensity Value (Bq/cc, SUV or 

unitless) 
As per PET Intensity Mode 

CT Intensity Value (HU) - 

Shape e.g., sphere, blobby sphere 

Shape Size (mm) - 

Reference Lesion Activity (Bq/cc) 
As per reference ROI, or Baseline 

Background Activity 

Baseline Background Activity (Bq/cc) 

Sample from the reconstructed image (same 

reconstruction parameters as simulation) 

prior to lesion insertion 

Target Lesion Activity (Bq/cc) Calculated 

Surrounding Margin (mm) Surrounding region is defined as a 2 cm 

margin around the defined lesion. These 

values are sampled from the reconstructed 

image (same reconstruction parameters as 

simulation) prior to lesion insertion. 

Surrounding Mean PET Intensity (Bq/cc) 

Surrounding SD PET Intensity (Bq/cc) 

Surrounding Min PET Intensity (Bq/cc) 

Surrounding Max PET Intensity (Bq/cc) 
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4.2.3 AI Processing 

Two independent research groups that were developing AI for lesion detection in 

PET were invited to participate in this study. Both of these groups used real tumours to 

train, test, and validate their AI.  

PAIRE is a Paris based startup company using a 3D deep convolutional neural 

net-based AI to detect lesions in FDG PET/CT scans. [42] The PAIRE AI was trained 

using real lesions from two lymphoma clinical trial datasets. The lesions were semi-

automatically segmented using an external software and reviewed by two physicians to 

form the ground truth on which PAIRE AI was trained and validated.  

QURIT is a lab based at the University of British Columbia which has developed 

a PET/CT lesion detection AI using 3D residual U-nets. [43] This AI was trained using 

real lesions from a combination of 4 external datasets containing a variety of lymphoma 

cases from Canada, South Korea, and Germany. Three of these datasets were segmented 

by five physicians separately. The fourth dataset was taken from the Cancer Imaging 

Archive, which included ground truth segmentation results from two radiologists.  

In both cases, the complete image library was sent for automated analysis. 

Reports of detected lesions were returned in NIFTI segmented files for objective scoring 

of lesion detection.  

For the QURIT data, all the lesions were segmented using a single region of 

interest. Therefore, in-house analysis was used to separate these into unique disjoint 

regions. In the PAIRE data, each lesion was already labelled as a unique region. Thus, the 

results of both methods were converted to a consistent format with each lesion indicated 

as a spatially connected segment in the image pixel matrix.  
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Herein, the methods are arbitrarily referred to as Algorithm A and Algorithm B to 

obscure performance of each AI.  

The center of mass of each segmented region was calculated and used to encode 

the center coordinate of each lesion. To measure the lesion size, the average of two 

methods was used. The first measurement was done by averaging the difference between 

the minimum and maximum coordinate values in each Cartesian direction. If the lesion is 

not a round shape, or has protrusions, this method is susceptible to overestimating the 

lesion size. The second measurement was done by calculating the volume (number of 

voxels in the segment multiplied by the voxel volume) and solving for the diameter from 

the volume of a sphere equation. This method assumes that the segmented region is 

spherical. Because neither approximation of the lesion diameter is completely accurate, 

their average was used, to avoid extreme outlier values. Lesion diameter was used, as 

opposed to radius or volume, since the lesion diameter was varied in intervals from 1 to 

15 mm, making the x-axis of graphs simpler and more readable. Furthermore, 

segmentation metrics such as dice coefficients were not used, since this study deals with 

the detection of lesions, not segmentation. 

In addition, the lesion intensity, background intensity, and background standard 

deviation were measured from each image. These values were used to calculate the 

contrast and contrast-to-noise ratio, as they are defined in Section 4.2.4. After reading in 

each data set and calculating the location and size values, the patient ID, study number, 

Cartesian coordinates, size, intensity, contrast, and contrast-to-noise ratio were exported 

as a comma-separated values (CSV) table for both AI.  

4.2.4 Characterization of AI Performance 
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Lesions reported by the AI were compared with ground truth data by relative 

position. Reported lesions that were within 2 pixels (~ 0.7 cm) of the center of ground 

truth lesions were scored as true positives and a hit (i.e., these were deemed lesions that 

were correctly detected by the AI). Reported lesions that were not within 2 pixels of 

ground truth lesions were deemed false positives (i.e., lesions that were reported, but 

were not synthesized). Finally, lesions that were synthesized but did not have a 

corresponding reported lesion within 2 pixels distance to the center were scored as false 

negative and a miss (i.e., a true lesion that was not detected). True negatives are regions 

that had no lesion inserted or detected and were not considered in the analysis. Figure 4.2 

summarizes these scoring combinations. 

  

Figure 4.2: Lesion scoring grid. 

After scoring, true positive lesions were plotted on a bar graph by their simulated 

anatomical location for each algorithm, alongside the total number of simulated lesions in 

said location. 
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Moreover, true positives (hits), false negatives (misses), and false positives (false 

findings) were plotted with respect to lesion size (diameter) and intensity. Several 

intensity metrics were evaluated including: 

- Lesion intensity relative to the liver 

- Lesion to background contrast 

- Contrast-to-Noise Ratio (CNR) 

As mentioned previously, the lesion intensity relative to the liver was defined in 

the LST during lesion creation using a reference region in a uniform region of the liver. 

Lesion intensity was also measured from the image post-reconstruction and compared to 

the defined lesion intensity (i.e., measured versus expected). When measuring the values 

from the image, the mean lesion intensity (𝐼𝑙𝑒𝑠) was measured within the detected region, 

for AI lesions, or defined region, for ground truth lesions. The background mean intensity 

(𝐼𝑏𝑘𝑔) and standard deviation (𝜎𝑏𝑘𝑔) were measured using a 20 mm margin around the 

lesions. Lesion contrast was calculated using the mean background and mean lesion 

activity, as seen in Equation 4.1. [44] The CNR was calculated using the mean 

background activity, mean lesion activity, and the standard deviation of the background, 

as seen in Equation 4.2.  

   𝑪𝒐𝒏𝒕𝒓𝒂𝒔𝒕 =
|𝑰𝒍𝒆𝒔−𝑰𝒃𝒌𝒈|

𝑰𝒃𝒌𝒈
       Equation 4.1 

  𝑪𝑵𝑹 =
|𝑰𝒍𝒆𝒔−𝑰𝒃𝒌𝒈|

𝝈𝒃𝒌𝒈
                 Equation 4.2 

The contrast and CNR values were calculated during both the download of ground 

truth data, for true positives and false negatives, and during analysis of each AI 

measurement, for true and false positives. The expected contrast and CNR values were 
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calculated using the expected lesion intensity (𝐼𝑒𝑥𝑝) calculated from the lesion intensity 

relative to the liver ((𝐼 𝐼⁄ )𝑟𝑒𝑙) defined by the user in the toolbox, 

                     𝑰𝒆𝒙𝒑 = (
𝑰

𝑰
)

𝒓𝒆𝒍
𝑰𝒍𝒊𝒗𝒆𝒓              Equation 4.3 

where 𝐼𝑙𝑖𝑣𝑒𝑟 is the intensity of the liver.  

The measured contrast and CNR were calculated using the mean lesion intensity 

measured from the image. Equation 4.3 was also used to convert the measured lesion 

intensity (by replacing the expected intensity with the measured intensity) to the intensity 

relative to the liver by dividing by the intensity of the liver reference region, for detected 

lesions. The expected and measured values were compared to influence of the lesion 

insertion and reconstruction on the final contrast and CNR values.  

Likewise, the expected and measured lesion sizes were plotted for each AI 

algorithm. A line of best fit (with 0 intercept) was fitted on these graphs and subsequently 

used to calibrate the measured size for false positives. This was done to model what the 

lesion size would have been, if the false positive lesions were true positives, allowing for 

a more similar comparison of data of the false positive lesions with true lesions. The 

calibrated false positive values were plotted along with the hit and miss lesions with 

respect to lesion size and the measured intensity, contrast, or CNR values. By using the 

measured values for all three lesion types, the values are in comparable terms. 

4.2.5 Psychophysical Response Model 

The hits and miss data were used to fit a perception model of lesion detection 

probability as a function of lesion size and lesion contrast. First, a power-law model was 

used  as a measure of the intensity of the stimulus (𝑆) as previously proposed in,  

 𝑺 = 𝑨 ∙ 𝒅𝑫 ∙ 𝒄𝑪 Equation 4.4  
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consisting of three free parameters: 𝐷 the power of the lesion diameter, 𝑑; 𝐶 the power of 

the lesion contrast or CNR, 𝑐; and 𝐴 an amplitude normalization factor. [45], [46] 

The signal perception psychometric response was modeled using a Weibull 

function, as shown in Equation 4.5. [36] The model determines the probability (𝑃) of 

detecting a lesion of a given size and contrast. 

 𝑷 = (𝟏 − 𝜸 − 𝝀) [𝟏 − 𝒆𝑺𝜷
] Equation 4.5  

Both the guess and lapse rates, γ and λ respectively, were set to zero. This was 

done under the assumptions that the experiment consisted of lesion localization and the 

odds of guessing the lesion location was very low (γ = 0). Furthermore, AI, unlike human 

observers, are expected to be reproducible and untiring, hence lapses were assumed 

unlikely (λ = 0). The remaining parameter, β, is redundant with parameters A, D, and C 

and therefore was set to 1. Consequently, parameter A is correlated with the breadth of 

the transition zone between where signal intensity shifts from a high degree of lesion 

detection to high degree of lesion miss. Model fitting was performed using an iterative 

(without a differential estimation) cost minimization function, as shown in Equation 4.6. 

The first term penalizes for difference between lesion score (where 0 is a miss and 1 is a 

hit) and the model predicted probability of lesion detection. The second term strongly 

penalizes for negative model parameter (𝐴, 𝐷, and 𝐶) values. 𝑊 was set at 500. 

         𝑪𝒐𝒔𝒕(𝒙) =  ∑ (𝑷(𝒙, 𝒅𝒊, 𝒄𝒊) − 𝑺𝒄𝒐𝒓𝒆𝒊)
𝟐 + 𝑾 ∙ ∑ {

𝟎 𝒙𝒋 ≥ 𝟎

𝟏 𝒙𝒋 < 𝟎
}𝟑

𝒋=𝟏
𝒏
𝒊=𝟏          Equation 4.6 

The model response was plotted as a function of diameter and contrast, with the 

responses superimposed. Furthermore, the 80% and 95% probabilities of lesion detection 

contours were arbitrarily selected to represent fair and good levels of performance 

respectively and were emphasized graphically on the model response plots. Limits of 
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detection were extrapolated from the model outside the range of experimental values as 

approximations for subsequent research. 

4.2.6 Statistical Analysis 

Population summary statistics (including age, weight, injected activity, etc.) were 

presented as mean values (μ), standard deviations (σ), and range in the form of μ ± σ 

[min, max]. Sensitivity and precision were measured using Equation 4.7 and 4.8. Due to a 

lack of true negatives, specificity was not measured. [35] 

𝒔𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 =
𝒕𝒓𝒖𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔

𝒕𝒓𝒖𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔 + 𝒇𝒂𝒍𝒔𝒆 𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔
   Equation 4.7 

  𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝒕𝒓𝒖𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔

𝒕𝒓𝒖𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔 + 𝒇𝒂𝒍𝒔𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔
   Equation 4.8 

To compare the psychophysical model parameters of the AI algorithms, model 

fitting was performed with 1000 bootstrap sampling. The parameters were reported as 

median value and interquartile ranges, and the medians were compared using a Wilcoxon 

rank-sum test and p-values were reported, with p<0.05 considered statistically significant. 

4.3 Results 

The lesion library’s patient demographics can be seen in Table 4.2, with a wide 

distribution of weight, height, and age, and a balanced distribution of males and females.  

Table 4.2: Demographics of the lesion library 

Demographics [n = 56 patients] μ ± σ [min-max] 

Injected Activity (MBq) 253 ± 45 [133, 322] 

Weight (kg) 80 ± 19 [41, 128] 

Height (m) 1.69 ± 0.12 [1.47, 1.92] 

Age (years) 63 ± 14 [27, 85] 

Females (%) 46%  

Number of Lesions per Study 5.0 ± 1.1 [3, 7] 
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4.3.1 AI Reported Lesion Scores 

Table 4.3 summarizes the number of simulations comprising the lesion database 

and the number of lesions reported by each AI. In both cases many more lesions were 

reported by the AI than were actually simulated (1381 and 1098 for Algorithms A and B, 

respectively, versus 565).  

Table 4.4 summarizes the scoring of these lesions against the ground truth data 

with Algorithm B having more true positives, fewer false positives, and fewer false 

negatives, indicating superior performance over Algorithm A in all metrics. Both 

algorithms have low precision, whereas only Algorithm A has low sensitivity. 

Figure 4.3 shows an example image of the detection of lesions for a patient for 

both algorithms. Some detected regions are matching in both AI, but Algorithm A seems 

to pick up large regions in the abdomen. 

Table 4.3: Lesion simulation and detection information 

Number of 

Patients 

Number of 

Studies 

Number of Simulated 

Lesions 

Number of Detected 

Lesions 

56 114 565 
Algorithm A: 1381 

Algorithm B: 1098 

 

Table 4.4: Lesion scores for each algorithm 

AI 

True 

Positive 

(Hit) 

False 

Positive 

False 

Negative 

(Miss) 

Sensitivity Precision 

Algorithm A 119 1182 366 24.5% 9.1% 

Algorithm B 374 724 191 66.2% 34% 
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a) b)  

Figure 4.3: Detected lesions (blue and purple) in Volume Viewer on Matlab, overlayed with the 

respective image (greyscale) for a) Algorithm A and b) Algorithm B.  

4.3.1.1 Anatomical Lesion Locations 

The hit and miss lesions categorized by anatomical region are listed in Table 4.5 

and Figure 4.4 for Algorithms A and B. Algorithm B outperformed Algorithm A for 16 

of the 22 lesion locations. Three of the locations had equal detection between algorithms, 

while the remaining 3 locations had no hits for either algorithm. By design, a large 

number of lesions were placed in the lungs, since the lungs are the only region in the 

body with both low CT and low PET values, allowing for high contrast lesions. Of the 

locations with more than 15 total lesions, only the axilla and breast had detection of 50% 

or more of their respective lesion number for both AI.  
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Table 4.5: Total Lesions and Hits for Algorithms A and B by Anatomical Location 

Anatomical 

Location 
Total Lesions Algorithm A Hits Algorithm B Hits 

Abdomen 84 28 57 

Aorta 2 0 2 

Arm 1 1 1 

Axilla 74 41 62 

Breast 16 8 14 

Bronchi 26 9 17 

Esophagus 1 0 0 

Groin 2 1 2 

Hip 12 6 9 

Jaw 1 1 1 

Knee 1 0 1 

Leg 1 0 0 

Liver 23 6 19 

Lung 197 67 117 

Neck 8 2 4 

Ribs 12 3 10 

Shoulder 1 1 1 

Stomach 5 0 3 

Thigh 46 15 32 

Throat 11 2 3 

Trachea 28 8 19 

Uterus 3 0 0 
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Figure 4.4: Distribution of lesion anatomical location and corresponding number of hits for 

Algorithms A and B. Number of misses are the differences between the total and hit numbers. 

4.3.1.2 Limits of Detection Modelling 

Figure 4.5 displays the relationship between the size and intensity of lesion in 

terms of hit and missed lesions. There appears to be a significant amount of overlap in the 

mid region, preventing a well fitted model from matching the data. Using other lesion 

features, such as contrast and CNR, allows the data to be better separated, as seen in 

Figure 4.6 and Figure 4.7, respectively. Regardless, complete separation between hit and 

miss regions is not achieved with either.  
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Figure 4.5: Detectability of lesions for Algorithms A and B with expected intensity relative to the 

liver. 

  
Figure 4.6: Detectability of lesions for Algorithms A and B with expected contrast. 

  

Figure 4.7: Detectability of lesions for Algorithms A and B with expected contrast-to-noise ratio 

(CNR) 
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Corresponding graphs of the probability of lesion detection for any given size and 

contrast for each AI algorithm are shown in Figure 4.8 and using CNR is shown in  

Figure 4.9. Model fit to the data was judged to be good. Visually, agreement of the model 

and the overlayed responses (dots) is apparent. Numerically, the model predicted 

responses (hit: probably > 50%; miss: probability ≤50%) agreed with the true responses 

in 80% of lesions for both Algorithms using contrast. When combining responses from 

both Algorithms response agreement dropped to 75% indicating a divergence in their 

responses. For CNR, predicted response agreement maintained the same, except for 

Algorithm B, which increased to 83%. 

The parameters for each psychophysical response model can be seen in the top right of 

each figure. The larger blue region in the perception model of Algorithm B, for both 

contrast and CNR, corresponds to the higher hit (true positive) and lower miss (false 

negative) rates in Table 4.4. Furthermore, the smaller detectable lesion size and lower 

lesion contrast for Algorithm B are reflected by the higher model parameters D and C 

respectively. Finally, the transition from red to blue zones, associated with imperceptible 

and obvious lesion zones, respectively, is depicted by the white strip region (roughly 40% 

to 60% probability). The width of this region reflects a range of uncertainty, which is 

visually narrower in Algorithm B and corresponds to a larger A value.  
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Figure 4.8: Perception model fit to hit and miss scores (dark red and dark blue dots, respectively) 

indicating the probability of lesion detection by simulated lesion contrast and size. Black lines 

indicating 80% and 95% probability of detection represent the limits of detection. 

 

Figure 4.9: Perception model fit to hit and miss scores (dark red and dark blue dots, respectively) 

indicating the probability of lesion detection by simulated lesion contrast-to-noise ratio and size. 

Black lines indicating 80% and 95% probability of detection represent the limits of detection. 

In bootstrap analysis of the fitted perception models, all parameters were 

significantly different (p<0.001) between the two algorithms both using contrast and 

CNR as a lesion parameter as shown in Table 4.6.  
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Table 4.6: Perception model parameter (median ± interquartile-range) using 1000 bootstrap samples 

and test for significant difference. 

Parameter Algorithm A Algorithm B 
p-value 

(Wilcoxon rank-sum) 

Contrast 

A (1.3 ± 1.8) × 10−4 (3.8 ± 6.4) × 10−4 2.3239 × 10−86 

D 2.90 ± 0.49 3.39 ± 0.82 1.5752 × 10−97 

C 1.83 ± 0.31 1.58 ± 0.29 2.006 × 10−107 

CNR 

A (3.96 ± 6.3) × 10−5 (1.3 ± 2.2) × 10−4 4.8569 × 10−82 

D 2.84 ± 0.53 3.14 ± 0.62 4.8769 × 10−47 

C 1.64 ± 0.25 1.58 ± 0.33 3.1937 × 10−7 

 

4.3.2 Lesion Size 

When comparing the size of the ground truth lesion to the size of the detected 

lesion, the detected lesion size is larger on average than the simulated lesion size, as seen 

in Figure 4.10, and as is reflected by the lines of best fit for both algorithms. The line of 

best fit was set to have an intercept at y = 0, to ensure the size calibration didn’t result in 

negative size values.  

 

Figure 4.10: Variation in size for detected lesions compared to their ground truth size for Algorithms 

A and B. 

4.3.3 Measured versus Expected Lesion Intensity Metrics 
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As mentioned previously, the values for intensity were taken from the LST and 

measured from the image and used to calculate both expected and measured contrast and 

CNR. The difference in the expected and measured values can be seen in Figure 4.11, 

where the size of the lesion in encoded by its colour. It can be seen that larger lesions 

appear closer to the line of identity, whereas smaller lesions appear further away and 

closer to the x-axis.  

 
Figure 4.11: Variation between expected and measured metrics of lesion intensity including: intensity 

relative to the liver, contrast with background (ratio), and contrast-to-noise ratio (CNR), for ground 

truth lesions. 

4.3.4 False positives 

For false positive results, no ground truth data exists. Regardless, these were 

plotted along with the hit and miss data with the measured intensity, contrast, and CNR 
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values, as seen in Figure 4.12, with lesion size calibrated from the true positives data 

shown in Figure 4.10. The false positives appear to be mostly associated with low 

contrast and low CNR compared to the hit and miss lesions. Furthermore, even after size 

calibration, Algorithm A has a very large range of sizes, extending up to 73 mm. 

Algorithm B tends to have most false positive lesions between 0 and 10 mm, with a 

maximum size of 18 mm.  
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Figure 4.12: Hit (blue) and miss (red) graphs against image measured metrics, including false 

positives (yellow), where the sizes of the false positives are calibrated using the line of best fit from 

Figure 4.10. 
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Chapter  5: Discussion and Conclusion 

Using real patient data and the LST, a relatively large image library was 

constructed with well characterized synthetic lesions. The lesion characteristics, 

including location, size, and intensity, served as a ground truth reference for objective 

evaluation of lesion detection by observers. The image data were distributed to two 

independent laboratories developing AI for lesion detection from which their lesion 

prediction results were objectively analyzed against the reference truth. Novel analysis 

was performed that includes not only the overall lesion detection rates, but breaks these 

down by the lesion characteristics, including size and contrast, or size and CNR. Lastly, a 

parameterised psychophysical based model was created to briefly summarize the lesion 

detection performance of an observer. 

5.1 Lesion Synthesis Toolbox 

The Lesion Synthesis Toolbox was an essential tool in this research, as it allowed 

for the creation of synthetic lesions in real PET/CT data for the lesion library. The 

incremental developments to the toolbox were vital to achieve a productive lesion 

insertion software for creating a large library of synthetic lesions. The most significant 

developments include integrating the toolbox with clinical software to visualize 

completed simulations to allow for verification using clinical software and the industry 

standard DICOM format. Furthermore, the download of ground truth lesion values and 

image characteristics enabled the analysis of detected lesions. 

With the software development completed, the bottleneck for creating synthetic 

images was the simulation and reconstruction time. On a desktop computer with i7-4790 

CPU at 3.6 GHz reconstruction of a single PET bed position was about 2 hours. With 4 
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physical cores (8 logical cores) and 16 GB of RAM up to 3 bed positions could be 

processed simultaneously. Thus, for a whole-body PET study with 9 bed positions, a 

typical simulation required approximately 6 hours. A more modern desktop with more 

memory and more cores can likely perform the same reconstruction within 2 hours. The 

GE DUETTO toolbox does not yet support GPU acceleration but is expected to be 

available soon and could further improve reconstruction times. Likewise, even a modest 

computer cluster could be leveraged to highly increase simulation throughput by 

parallelizing the operation across multiple simulations. 

The time to define lesions in an image using the LST only amounts to several 

minutes per simulation, and thus dozens of simulations can be configured and queued in a 

workday by a single user. Future versions may benefit of functionality to define 

simulations with multiple variations of the same lesion (e.g., varying intensity and/or 

sizes). Presently, a trained user is still required to define anatomically realistic lesion 

locations. 

5.2 Characterization of AI Performance 

This study characterized two lesion-detection AI algorithms. Both AI detected 

significantly more lesions than had been inserted, with Algorithm A detecting more than 

Algorithm B. Furthermore, Algorithm B was shown to be more sensitive and precise than 

Algorithm A. Lesion detection did vary by anatomical location but not significantly, with 

Algorithm B consistently finding a higher number of lesions per location. Thus, overall, it 

appeared that Algorithm B outperformed Algorithm A. Although from the summary 

statistics it appears as if these AI did not perform well, this is not necessarily the case. 

The lesion library contained a large number of lesions below the typical resolution of 
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PET images, resulting in these lesions being missed. The lesion characteristics, including 

size and intensity, heavily impact the ability of AI to detect such lesions.  

To better understand what types of lesions each algorithm was able to detect, 

deeper analysis was performed by lesion size and intensity metrics (Figure 4.5, Figure 

4.6, and Figure 4.7). These confirmed the expectation that larger and brighter lesions 

could be more reliably detected than faint and/or smaller lesions. Lesion parameters were 

compared to determine the best intensity metric to distinguish between detected and 

missed lesions. Lesion to background contrast and CNR were better suited metrics than 

lesion intensity, as demonstrated by better separation of the hits and misses in these 

figures. This is anticipated, since the detectability of a lesion is dependent on how well it 

can be distinguished from surrounding tissue, which is essentially the definition of 

contrast.  

Contrast and CNR performed similarly and produced similar patterns on the score 

charts (Figure 4.6 and Figure 4.7), however, CNR had less data occupying the upper right 

region of the graph. This indicates that larger lesions have lower CNR, even while having 

high contrast values. The likely explanation for this trend is due to the fixed margin 

around the lesions when measuring intensity values from the image. The margin causes 

larger lesions to have a larger sample size than smaller lesions, due to the cubic term 

from volume measurements. The larger sample size could result in more variation and 

more noise, causing the CNR to be lower for larger lesions. This is especially true for 

large lesions that are defined on the boundary or an organ (e.g., mediastinum), thus part 

of the lesion may have moderate background from the organ and the other part of the 

lesion background may have low background signal from the surrounding tissue. This 
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scenario increases the variability in the background region, and hence the noise level in 

the CNR denominator. To resolve this inconsistency, a fixed region of interest should be 

used around the lesion, instead of a fixed margin.  

A potential limitation to the detection analysis was the method of characterizing 

detected and missed lesions. Using the proximity (3 cm) of centers of mass as a criterion 

for lesion detection May have mis-scored large, overlaying lesions as a miss if they were 

off-centred. Alternatively, using the area of overlap between lesions may have been a 

more accurate measure of detection. However, this approach is also not without caveats. 

For example, Algorithm A segmented very large regions, up to 73 mm across, and if 

there was a small lesion placed inside this large region, such as a 5mm lesion, it may be 

labelled as detected when it should not be.  

5.2.1 Perception Model 

While visual comparison of the score charts for each AI algorithm (Figure 4.6 and 

Figure 4.7) clearly showed that Algorithm B could reliably detect smaller and fainter 

lesions than Algorithm A, a quantitative comparison of performance was sought out. 

Hence, a lesion detection prediction model was fit from the domain of psychophysics. 

The model was simplified to consist of three parameters that encoded the sensitivity to 

lesion size, D, sensitivity to lesion contrast, C, and a third parameter, A, that both 

normalized the perception signal intensity (determined by D and C) and encoded the rate 

of transition from undetectable to robust lesion detection. Quality of fit metrics (percent 

agreement between model predicted and actual lesion score) indicated that the model was 

suitable to characterize the AI performance in these data. Although it is worth noting that 

other commonly used quality of fit metrics (e.g., coefficient of determinations, 
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correlation, sum-squared-error) were not investigated due to the difference between the 

model response (continuous probability of detection in the range of 0 to 1) and the 

measures (dichotomous hit score as 0 or 1). 

Through bootstrap analysis (Table 4.6) it was demonstrated that the variance of 

these parameters (represented by the interquartile ranges) were sufficiently small that the 

median model parameters were significantly different from one another. Therefore, these 

parameters may be useful to easily benchmark alternative observers on the quality of 

their limits of detection. Furthermore, these parameters may be used to compare between 

each intensity metric to differentiate the best metric for characterizing lesion 

detectability, however, further understanding of the model parameters is needed before 

this can be done. 

Regardless, the use of the psychophysical model and its parameters is 

preliminary, and more work is required to fully understand how this model may be best 

applied. It is not completely clear how the model parameters should be interpreted or 

whether better summary statistics may be derived from these parameters. 

5.3 False Positives 

While an observers’ sensitivity to detect mild lesions is desired, its important to 

be cautious of a model that also produces many false-positive lesions. In medicine, it is a 

common concern that with excessive testing, patients are being increasingly exposed to 

unnecessary medical workup with the associated risks and costs they entail. Therefore, 

characterizing where false lesions may be reported by an observer was studied. The 

results demonstrated (Figure 4.12) that most false-positive lesions have similar sizes to 



Limits of Lesion Detection of AI in PET 

Q. de Bourbon, 2023 69 

real lesions and contrast similar to missed lesions. Hence many of these lesions may be 

best to not report (either by automated exclusion or by physicians reviewing the study).  

In few cases, reported lesions had high contrast and/or size consistent with true-

positive lesions. While these false-positive lesions were not studied exhaustively, they 

may represent several scenarios. One possibility is the detection of anatomical structures 

with high intensity that are not lesions (e.g., kidney, urinary bladder, brain, or heart). 

Another possibility is the detection of actual lesions that were not synthesized, but were 

present in the original patient data, despite best efforts to exclude such studies. 

5.4 Expected Versus Measured Lesion Characteristics  

For both AI algorithms, the detected size of lesions was larger on average than the 

simulated size (Figure 4.10). The variation in size between simulated and detected lesions 

is likely due to blurring during image reconstruction. In addition, the AI detection could 

include a margin around lesions, which would explain the different slopes on the figures.  

Contrarily, the measured values for intensity, contrast, and CNR were smaller 

than expected values for all points. The distribution of sizes from these graphs (Figure 

4.11) illustrated a clear pattern, with larger lesions reproducing their defined 

characteristics better than smaller lesions. During lesion simulation and image 

reconstruction, lesions undergo blurring, which partially limits the spatial resolution of 

PET (~6 mm in our case). For smaller lesions this blurring is more significant, resulting 

in their intensity being reduced significantly. For example, a lesion of size 1 mm and 

relative intensity of 5.9 times the intensity of the liver underwent blurring and had a 

resulting value of 0.5 times the intensity of the liver, which is a reduction of about 92%. 

A lesion of size 9 mm, however, decreased only from 5.8 to 4.3 times the intensity of the 
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liver which only is a reduction of 26%. These results are consistent with earlier literature 

on Q.Clear reconstruction. [39], [41] 

5.4.1 Characterization of Human Observer Performance 

Much like the analysis performed for AI, the same methods could be applied to 

characterize the performance of human observers. In fact, the perception models in this 

work were similar in shape and magnitude of model parameters to those previously 

published for a small subset of human observers. [41] However, several considerations 

should be accounted for. Unlike AI, humans may not be completely reproducible due to 

distractions, mistakes, ambiguity of the task, satisfaction of search or willingness of 

participants to guess when they struggle to find lesions. In psychophysical models guess 

and lapse rates are typically included in the psychometric model to account for this. In 

this work, the guess and lapse rates were set to zero for AI. For human observers, these 

parameters are either fit to the response data or are estimated. In previous work in 

humans for image-based detection guess rates are typically set low (e.g., <1%) and the 

lapse rate is set at ~5%. Another consideration when working with human observers is 

that they become tired of the task and can only produce a limited amount of results data 

and/or quality data. Furthermore, expert observers (e.g., physicians) may be difficult to 

obtain and are costly to hire. With AI it is possible to generate many more data points 

than with human observers, especially when large image libraries with ground truth data 

exist. 

5.5 Other Application of Synthetic Lesions 

The potential applications of synthetic lesions go beyond those explored in this 

work. Other applications can be envisioned including the following: 
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- Evaluation of segmentation quality (whether by humans or AI). Image 

segmentation metrics typically include the dice coefficient for quality of overlap 

of the segmentation with the ground truth lesion. Other commonly reported 

measures are of the distance of the segmentation boundaries from those of the 

ground truth. These are often reported as the mean or as the maximum deviation 

(Hausdorff distance). 

- Evaluating the impact of technologies on lesion detection and segmentation 

performance. As implied in Figure 3.1, after lesion synthesis downstream steps 

include image reconstruction and display. Likewise, and image processing could 

be included. Synthetic lesions may be used to evaluate the impact of alternative 

technologies on the clinical task. This was clearly demonstrated in prior work 

evaluating PET reconstruction algorithms.[47], [48]  

- Evaluating human reader performance. The last step in the imaging PET imaging 

cascade is interpretation by the clinician. Synthetic lesions could be applied to test 

human reader performance with training and experience, however given the 

tediousness of this task and the need to generate clinically relevant lesions it is 

doubtful that this will ever be applied broadly. More practically, synthetic lesions 

may be useful in experiments seeking to guide optimal image viewing conditions 

(e.g., lit/dark room, desktop versus mobile device, colour rendering) and for 

evaluating search strategies such as the use of checklists, standardized reporting, 

computer aided reporting and quality improvement initiatives.[48]  

- Training of AI is another clear application for synthetic lesions. In the same way 

that it is difficult to label data for AI and human performance validation, it is 
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more so applicable for generating ground truth data to train AI, where even more 

data are required. Synthetic lesions can be applied to better control the training 

process to teach the AI to detect subtle lesions and learn to recognize lesions in 

uncommon anatomical sites that may be under-represented in clinically derived 

datasets. A possible pitfall is that the synthetic lesions may lack necessary realism 

to represents clinical patterns. Validation with clinical lesions is therefore 

paramount. 

5.6 Application to Other Pathologies 

This work was performed in the context of oncology PET where lesions are 

manifested as regions with elevated tracer activity. Cancer imaging represents that vast 

majority of PET use internationally. Nevertheless, other PET applications have been 

growing.  

In cardiac PET, positive pathology findings are typically associated with 

decreased tracer uptake (e.g., reduced myocardial blood flow).[49] Thus, in that context 

synthetic lesions would have to incur negative activity (for a count reduction), which we 

have not attempted with LST, but theoretically should be feasible. 

In neurology PET, positive PET findings may be associated with either increased 

or decreased regional activity depending on the disease in question and the physiologic 

state (e.g., ictal versus interictal epilepsy). While synthetic lesions may be useful in these 

applications, it would require lesions consistent with anatomical and physiologic 

structures which exceed the simple shapes (i.e., spheres) demonstrated in this work. 

Defining such shapes would require significant enhancements to the lesion drawing tools 

in the LST. 
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PET for detection of infection of unknown origin in most aspects is very similar 

to oncology PET, and in this domain the LST in its current form may be suitable. 

5.7 Future Work 

There are many possible directions in which this work can be used in future 

research. Firstly, this work can be expanded to include more AI algorithms. To date, 

other labs have been in communication, but have yet to submit their results. Increasing 

the number of AI algorithms would allow for a deeper understanding of characterization 

of AI detection, and would be less of a simple comparison between two AI.  

In addition, the lesion library can be used to train AI for lesion detection tasks, as 

the ground truth values are known from the toolbox. However, the realism of artificial 

lesions may heavily impact the AI’s ability to detect real lesions. Further testing would be 

required to implement artificial lesions for the purpose of training AI for lesion detection.  

Moreover, a larger library of lesions would be beneficial to increasing the 

accuracy of the results. Specifically, more lesions in different anatomical regions would 

allow to study the likelihood of AI detecting lesions in a variety of locations. For 

example, we did not evaluate lesion detection in the context of prostate cancer. Since the 

prostate is in proximity of the urinary bladder, which accumulates radioactive urine, so 

lesion detection performance may be very different than the other anatomical sites. 

Likewise for tumours in the proximity of the brain. Lesions could also be placed along 

boundaries of tissues, to study the effects of edges on detection of lesions.   

Furthermore, a library could be created using identical lesions, but with different 

reconstruction parameters. This would be made easy by using the ‘retrieve lesions’ button 

to bring back the original image and defined lesions, hence allowing for a comparison 
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between the detectability for different image reconstructions. In addition, this would 

allow to compare contrast and CNR measurements from different reconstruction 

algorithms or parameters.  

Clearly it would be beneficial to extend the LST to be used with other vendors, as 

currently it is only functional with GE Healthcare scanners. The LST software was 

designed with that in mind, but because file types and reconstruction methods are not 

standardized in the industry, collaboration with expert researchers and industry partners is 

pertinent. Furthermore, extending to other pathologies, such as MRI or ultrasound, would 

also be beneficial.  

An up-and-coming issue with medical imaging and advances in AI technology is 

the use of medical images to identify faces. [50] This would break anonymity and causes 

privacy and safety concerns for patients. Fortunately, de-identification techniques have 

been developed to anonymize patient faces by modifying facial features without the loss 

of important medical information. [51] Integrating this technology with the LST would 

ensure open-source libraries maintain patient privacy. Currently, this applies more to the 

CT portion of the PET/CT study which contains exquisite anatomical data. But even for 

PET with its lesser anatomical data, generative AI has been demonstrated to be 

moderately capable of reconstructing patient faces. [52] Another malicious use of this 

technology includes falsifying patient data. In the wrong hands, this technology could be 

used to insert false lesions into healthy patients and cause unnecessary medical 

intervention.  

Lesion detection using the CT component of a PET/CT study is surely to arrive 

soon. Currently, lesion detection AI uses the PET component of the study. While the LST 
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can insert lesions into reconstructed CT data, these have yet to be used for any research 

application. Regardless, it is likely that lesion insertion in both PET and CT will be 

required to characterize the performance of AI for lesion detection.  

5.8 Conclusion 

In conclusion, synthetic lesions are a useful tool to characterize the limits of 

detection in AI. Visual assessment and psychophysical models were effective at 

characterizing each AI’s detectability performance by size versus contrast and CNR, and 

proved each method to be statistically different using bootstrapping methods.  The Lesion 

Synthesis Toolbox is a feature rich tool that may aid researchers in training and 

characterizing AI, and thus may contribute to the delivery of precision healthcare.
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A.1 Introduction 

Lesion Synthesis Toolbox (LST) is a research tool developed by Ran Klein and 

his trainees at The Ottawa Hospital Research Institute in MATLAB®. LST is intended to 

generate well controlled fake lesions in raw positron emission tomography (PET) and 

reconstructed CT data and reconstruct the PET images in a realistic fashion.  

Thus far, LST has only been implemented and tested for GE Healthcare PET/CT 

scanners, using their DUETTO image reconstruction toolbox, which requires a research 

collaboration agreement with GE Healthcare. For more information on DUETTO and 

research collaboration contracts, contact your GE Healthcare research representative 

and/or Elizbeth Philps (Elizabeth.Philps@med.ge.com). Nevertheless, LST was designed 

to be extendable to work with other vendors and products and we are looking forward to 

collaborating to achieve this.  

LST can be used to reconstruct raw PET data. Lesions can be added with varying 

contrast, size, and shape, to both PET and CT datasets and can be previewed on the 

reconstructed images. In the case of PET, this is achieved by introducing the lesion signal 

into the projection data, prior to image reconstruction. In the case of CT, the lesions are 

painted into the reconstructed image. PET images can be reconstructed using any vendor 

supported algorithm (e.g., OSEM and Q.ClearTM) and parameters. 

LST can be used to create ground truth lesion reference images to train, validate 

and characterize human and AI observers. Furthermore, by changing reconstruction 

parameters, researchers can analyze how reconstruction changes the detectability of 

lesions and accurately models the noise and texture in a PET image. 
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Raw PET data and corresponding CTs can be imported from the PET scanner 

console using LST. Images with and without lesions can be displayed with various 

options for fusion, colormaps, and intensity levels directly within LST. Resulting image 

data (with and without lesions) can then be exported by DICOM transfer or DICOM files. 

Corresponding ground truth data on the lesions can also be exported. 

LST is based of the Master’s work of Hanif Gabrani-Juma[53], [54] and Quinn de 

Bourbon, under the supervision of Ran Klein at The Ottawa Hospital. 

 

Figure A.1: The Lesion Synthesis Toolbox icon 
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A.2 Starting LST 

LST can be run directly in MATLAB © by: 

1) Copying the LST program files to a local directory. 

2) Adding the local directory to the MATLAB path. 

3) Adding the DUETTO to the path. Recommended to make the path in the Recon 

Engines. 

4) Executing LesionSynthesisToolbox.mlapp in MATLAB 

Alternatively, LST can be compiled to run as a standalone executable or webapp 

as per MATLAB documentations. 

When LST runs for the first time, it will ask for a location to create the default 

data directories. The user can select either ‘initialize new’ or ‘locate existing’ to initialize 

the application data directory. Also, there is as an option to abort. If one of the first two 

options are selected, a file explorer window will open. From here the user can select a file 

folder in which a new folder is created, or an existing folder is selected, depending on if 

the user chose to initialize a new folder or locate an existing one. 

- If these data are to be shared between multiple computer users, it is recommended 

to a shared directory such as “C:\Lesion Synthesis Toolbox”. 

- These folders will store the archive of raw data and reconstructed images, which 

can be very large files. It is recommended to select a drive with >1TB capacity. 

The LST data subdirectories by default include: 

- Application Data – where LST configuration settings are saved including general 

settings, project settings and reconstruction profiles. 
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- Raw Data – where raw PET associated CT data are archived when retrieved from 

the scanner console. 

- Recon Queue – where reconstructions are queued for processing. 

- Reconstructed Archive – where reconstructed image data are archived along with 

their CT and intermediate reconstruction files. Reconstructed PET are saved as 

DICOM directories and in a _fir3D.mat file format, both of which are named for 

the reconstruction type. The CTs are saved as DICOM in a CTAC_DICOM 

directory and as a CTAC.mat file. Each patient data is saved in a unique identifier 

directory. 

- Simulation Archive – where simulations are queued for processing.  

- Simulation Queue – where simulated studies are archived. Subdirectories identify 

the patient and sub-subdirectories identify the simulation name. In each 

simulation CT images are saved in a DICOM directory and _fir3D.mat file (same 

as for Reconstructed Archive). Likewise simulated PET are named according to 

the reconstruction profile. The simulation parameters are also saved in a 

_LesionParams.mat file. 

When initializing a new installation, before the users can access the toolbox, the 

administrator must set up accounts for each user. The administrator is directed to the 

Configure tab to add users and make other general configurations such as setup/change 

the directories for the specific project. More details are available in section A.7. 
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A.3 The Login Tab 

In this window (see Figure A.2), the user can enter their credentials to unlock the 

workspace. Users are configured in the Configuration tab as described in the General 

settings. Each user may have their own list of projects and their associated settings. 

 
Figure A.2: The login tab 

Table A.1: Elements from the login tab in Figure A.2 

Element Name Description 

Field Username The user enters their username. 

Field Password The user enters their password. 

Button Login 
If the username and password are correct, the 

workstation will be unlocked. 

Lamp 

Processing Server 

Running 

    

Indicates whether the processing server is running in 

the background to process any reconstructions or 

simulations in the queues. A red circle     indicates 

that the server is not running, while a green circle     

indicates that the server is running. 

Lamp 
Workstation 

Locked     

If the username entered is incorrect, the “Workstation 

Locked” text will change to “username does not 

exist”. If the username is correct, but the password is 

incorrect, the text will display “password does not 

match”. If the workstation is unlocked, the red circle 
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changes to a green circle     and the “Workstation 

Locked” text will change to the User’s name. 

Button Logout  
When clicked, the user is logged out and the 

workspace is locked. 
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A.4 Data Retrieval Tab 

The data retrieval window connects to the scanner to retrieve recent data files. 

 
Figure A.3: Data Retrieval tab 

Table A.2: Elements from the data retrieval tab in Figure A.3 

Element Name Description 

Drop Down 

List 
Scanner 

The user selects a scanner from a drop-down list. The 

scanner list can be changed in the ‘Configure’ tab. 

Drop Down 

List 
Date Range 

The user selects the date range for the data from the 

scanner. The date options are ‘today’, ‘past week’, 

‘past 2 weeks’, ‘past 3 weeks’, ‘past month’, and 

‘all’. 

Button Connect 

If the connection to the selected scanner is 

unsuccessful, the button will turn red. If the 

connection is successful, the button will turn green 

and the data from the selected date range will load 

onto the patient data table. 

Table Patient Data 

The patient data files are listed with the patient 

directory, patient ID, patient name, and number of 

associated series. The patient data files can be sorted 

in ascending or descending order based on the 

directory, ID, and name. The user can select a patient 

to get more information. 
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Table Study Investigator 

The selected patient information appears, including 

the series path, series description, acquisition date, 

and acquisition time. A check box in the import 

series column can be selected to be imported. 

Checkbox 
Anonymize 

Imported Studies 

The selected patient data will be anonymized once 

the ‘Import Selected Studies’ button is pushed. 

Button 
Import Selected 

Studies 

The selected patient data will be copied to the Image 

Reconstruction Tab. This process may take several 

minutes. 

Pop-Up 

Window 
Anonymization 

The selected patient file is anonymized by replacing 

the patient family name, given name, ID, and the date 

of birth, however the year of birth is kept. The 

window is shown in Figure A.4. 

Pop-Up 

Window 

Confirm in place 

anonymization 

The user can choose to copy over only the 

anonymized version of the data using the ‘In place’ 

button, or can create a copy and transfer both 

versions using the ‘Duplicate’ button to the Image 

Reconstruction Tab. This window is shown in Figure 

A.5. 

 

Figure A.4: Anonymization window 

 

Figure A.5: In place anonymization 
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A.5 Image Reconstruction Tab 

In the image reconstruction window, the patient data is set up to be reconstructed.  

 
Figure A.6: Image Reconstruction tab 

Table A.3: Elements from the image reconstruction tab in Figure A.6 

Element Name Description 

Table Available studies 

The studies available for reconstruction are listed by 

study folder, patient ID, patient name, study 

description, and acquisition date. The user can select 

a study to be reconstructed or deleted. 

Button Refresh The list of available studies is refreshed. 

Button Delete Raw Data The study selected by the user is deleted. 

Button Anonymize Data 

The selected patient file is duplicated and 

anonymized. The pop-up window ‘Anonymization’ 

from Figure A.4 appears. 

Checkbox In Place 

When the checkbox is selected and the button 

‘Anonymize Data’ is clicked, the raw data are deleted 

after anonymization. The pop-up window ‘Confirm in 

place anonymization’ from Figure A.5 appears. 

Drop Down 

List 
Recon. Profiles 

The user selects the type of reconstruction method 

from a drop-down list. These are defined in the Recon 

settings as described in section 0. 

Table IR Parameter 

The reconstruction profile parameters are shown with 

their respective values. These values can be adjusted 

by the user. 
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Button 
Queue 

Reconstruction 
The patient file is added to the job queue. 

List 

Image 

Reconstruction Job 

Queue 

Lists the patient file in the queue, listed as {patient 

name}\{profile method}_reconParams.mat. The user 

can select jobs from the queue to be removed. 

Button Remove Job The selected patient file from the queue is removed. 

Button 
Start Processing 

Service 

Starts the background image reconstruction and lesion 

simulation service.  
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A.6 Lesion Insertion Tab 

The Lesion Insertion tab is used to simulate define, simulate and validate lesions 

(e.g., emulated disease) within the patient data. It consists of a 4-step workflow, defined 

in sub-tabs: 

A.6.1. Select Patient Sub-Tab 

The patient selection tab provides previews of reconstructed patient data. 

 
Figure A.7: Lesion Insertion tab for Select Patient sub-tab. 

Table A.4: Elements from the select patient sub-tab in Figure A.7 

Element Name Description 

List 
Reconstructed 

Patient Studies 

The list of patient studies that have been 

reconstructed will be displayed here. The user can 

select a study to be previewed or selected. Multiple 

studies can be selected to be sent to file. 

Button 
Delete 

Reconstruction 
The selected studies are deleted from the list. 

Button Send to File 
The selected studies CT and reconstructed PET 

images are sent to a folder selected by the user. 

Button Open File Location 
The selected study file location is opened in the file 

explorer. 
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Button Send to DICOM 
The selected data is sent to a location specified by 

the DICOM send field in the ‘Configure Tab’. 

Button Refresh Refreshes the list of reconstructed studies. 

Image Scan Preview 

A preview of the PET image of the selected study 

will be displayed with the sagittal, coronal, and 

transverse planes. The user can select the point of 

view by clicking on the image or can scroll through 

the image along a plane using a mouse scroll.  

Slider 
0-maximum 

intensity pixel 

The user can adjust the maximum intensity of the 

PET image, between 0 and the maximum intensity 

pixel in the image. The image units depend on the 

corresponding project configuration setting. 

Button Select Study 
The selected study will be opened in the ‘Define 

Lesion Sub-Tab’ for lesion insertion. 
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A.6.2. Define Lesion Sub-Tab 

In the define lesion tab, various lesion objects can be added to the patient’s 

reconstruction image. 

 
Figure A.8: Lesion Insertion tab for Define Lesion sub-tab. 

Table A.5: Elements from the define lesion sub-tab in Figure A.8 

Element Name Description 

Panel 3D Volume Viewer Preview of the image volume with lesion insertion. 

Image 3D Volume Viewer 

The 3D image of the selected patient study appears 

along the sagittal, coronal, and transverse planes. The 

user can scroll through the image using their mouse 

or can select to triangulate in three the three 

orthogonal slices by clicking on the image.  

Slider 
0-maximum 

intensity pixel 

The user can adjust the maximum intensity of the 

PET image, between 0 and the maximum intensity 

pixel in the image. The image units depend on the 

corresponding project configuration setting. 

List PET Colormap 
The user selects the colour map used for the PET 

images. 

Slider Fusion Factor 
The user selects the ratio of image intensity between 

the CT and PET images. 

Panel 
Define Reference 

object 

The user selects a reference region for the 

intensity levels in the simulated lesion object. 
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Field Object Name The user selects a name for the reference object. 

Field Object Location 

The user selects a location for the reference object. 

This can be done by manually writing the location or 

selecting a location using the crosshairs on the 3D 

volume viewer.  

List  Shape 

The user selects the shape for the reference object. 

The shape selection is currently limited to a 

homogenous sphere (i.e., the average intensity of the 

pixels within the sphere). 

Field Radius (mm) 
The user selects a radius for the reference object, in 

mm. 

Button 
Add Reference 

Object 
The reference object is added. 

Panel 
Define Lesion 

Object 

The user selects parameters for the simulated 

lesion object. 

Field Object Name The user selects a name for the lesion object. 

Field Object Location 

The user selects a location for the lesion object. This 

can be done by manually writing the location or 

selecting a location using the crosshairs on the 3D 

volume viewer. 

List Shape  

The user selects a shape for the lesion object. The 

shape selection includes a sphere and a blobby 

sphere*. 

Field Radius (mm) 
The user selects the radius of the lesion object, in 

mm. 

List PET Intensity Mode 

The user selects the intensity mode for the lesion 

object on the PET image. The intensity modes 

include ‘Bq/cc’ (native PET intensity value in units of 

Bq/cc), ‘SUV’ (intensity value in units of standard 

uptake values by body weight), ‘Lesion: Background’ 

(relative to background), and for each reference 

object ‘Lesion:{Reference object name}’ (relative to 

the reference object).  

Field/List PET Intensity 

The user selects the intensity for the lesion object for 

the PET image, based on the intensity mode. The 

intensity level can be written in the field, while the 

texture can be selected in the list. The texture options 

include ‘Final: Homogenous’ (equal intensity across 

lesion), ‘Final: Maintain Texture’ (average value 

changed but texture is the same), and 

‘Incremental’(additional over background). 

Field/List CT Intensity  

The user selects the intensity for the lesion object on 

the CT image, in Hounsfield Units. The intensity 

level can be written in the field, while the texture can 

be selected in the list. The texture options include 

‘Final: Homogenous’ (target uniform intensity across 
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lesion), ‘Final: Maintain Texture’ (target average 

value is specified and existing image texture is 

preserved), and ‘Incremental’ (intensity is added to 

the existing background activity in the image). 

Button Add Object 
The object is added to the list of lesion objects to 

simulate. 

Panel 
Lesion Objects to 

Simulate 
The list of lesion objects defined for simulation. 

List 
Lesion Objects to 

Simulate 

The lesion objects are listed here to be simulated. The 

objects can be selected by the user, which populates 

the Define Lesion Object Panel fields. 

Button Remove Object 
The selected lesion object, from the lesion objects to 

simulate list, is deleted. 

Panel 
Simulation 

Settings 

The user selects the image simulation and 

reconstruction settings. 

List 

Image 

Reconstruction 

Profile 

The user selects the type of reconstruction method 

from a drop-down list. These are defined in the Recon 

settings as described in section 0. 

Table Parameter Values 
The parameters of the selected image reconstruction 

profile are listed, and can be edited by the user. 

List Bed Range 

The user selects the bed range for the reconstruction 

with the lesion object, the options are ‘All beds’ and 

‘Bed range with lesions’.* 

Checkbox Keep Lesions 
When selected, the file and lesions stay in the ‘Define 

Lesion’ tab, which can be edited to be queued again. 

Button Queue Sim 

The lesion objects will be added to queue to be 

simulated, using the parameters and bed positions that 

the user selected. 

* denotes feature identified as not fully validated. 
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A.6.3. Job Queue Sub-Tab 

In this tab, the job queue is displayed, and the lesion studies can be simulated. 

 
Figure A.9: Lesion Insertion tab for Job Queue sub-tab. 

Table A.6: Elements from the job queue sub-tab in Figure A.9 

Element Name Description 

Button Refresh 
The queue list is refreshed. 

List Simulation Queue 
The job queue for lesion simulation is displayed. The 

user can select a job on the queue. 

Button Remove Job The selected job on the simulation queue is deleted. 

Button 
Start Processing 

Service 

Starts the background image reconstruction and lesion 

simulation service. 
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A.6.4. Proof Simulations Sub-tab 

The proof simulations tab allows for viewing the reconstructions after adding the 

lesion objects. 

 
Figure A.10: Lesion Insertion tab for Proof Simulations sub-tab. 

Table A.7: Elements from the proof simulations sub-tab in Figure A.10 

Element Name Description 

List 
Simulated Patient 

Studies 

A list of the patient studies that have been simulated 

appears here. The user can select a study to view. 

Button 
Export Lesion 

Summary Table 

An excel spreadsheet is generated 

containing a list of the lesion objects and their 

parameters in the project simulations. See 0 for 

more details. 

Button Refresh 
The simulated patient studies list is 

refreshed. 

Button Regenerate CT Sim  

When clicked, the selected patient’s CT is 

regenerated with the lesions included. This can 

be used if there is an issue creating the CT 

lesions. 

Button Delete Simulation 
The selected patient simulations will be 

deleted. 
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Button Send to DICOM 

The selected patient study is sent to a DICOM file on 

another server, which can be specified in the 

‘Configure’ tab. 

Button Send to File 

The selected studies are sent to a folder specified by 

the user. The studies include the CT and PET images, 

but not the ground truth values of the lesions.  

Button Open File Location 
The location of the patient simulation file 

is opened. 

Drop Down 

List 
Location Units 

The units for location of points in the 

image are defined. The user can select either 

‘pixel’, ‘mm from centre’, or ‘mm from origin’. 

Note that the unit that is selected will appear in 

the Excel ‘Lesion Summary Table’. 

List Reference ROIs 

The location of the reference regions of 

interest are listed using the units selected by the 

user. To rename the reference ROI’s, the user can 

right click on the ROI and a pop-up window will 

appear, as seen in Figure A.11. 

Button Retrieve Lesions 

The selected patient’s original 

reconstruction file is opened in the ‘Define 

Lesion Sub-Tab’ with lesions added to the 

‘Lesion Objects to Simulate’ list. Note that this 

does not edit the simulated image, it recreates the 

‘Define Lesion Sub-Tab’ before simulation. 

Button Copy to clipboard 
The list of lesions for the selected patient 

study is copied to clipboard. 

List Lesions 

The lesions are listed for the selected 

patient study with the parameters of the lesion, 

including name, size, shape, location, and 

intensity (mode, PET, and CT). To rename the 

lesions, the user can right click on the lesion and 

a pop-up window will appear as seen in Figure 

A.12. 

Image Simulation Review 

The selected patient study containing 

lesion objects is displayed on the screen using 

three views, the sagittal, coronal, and transverse 

view. 
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Slider 
0-maximum 

intensity pixel 

The user can adjust the maximum 

intensity of the PET image, between 0 and the 

maximum intensity pixel in the image. The 

image units depend on the corresponding project 

configuration setting. 

Drop Down 

List 
PET Colormap 

The user can select the colormap for the 

PET image. 

Slider Fusion Factor 
The user can select the ratio of intensity 

for the PET and CT images. 

 

  



 

Q. de Bourbon, 2023 100 

A.6.5. Lesion Summary Table 

When the Export lesion summary table button is pressed, the user is prompted to 

select a location and name of the Excel spreadsheet with the resulting ground-truth data 

for all the lesions in the project. By default, the file will be named {Project Name}-

ground truth.xlxs and will be saved in the simulation archive directory. 

The location coordinate system and units in the spreadsheet depend on the 

selection in the Location Units drop-down list. 

The parameters saved to the file are listed below. 

  

• Patient ID 

• Simulation Name 

• Reconstruction Profile 

• Series Description 

• Simulation Date  

• Lesion Name 

• Location Coronal [location units] 

• Location Sagittal [location units] 

• Location Transaxial [location 

units] 

• PET Intensity Mode 

• PET Intensity Value 

• CT Intensity Value 

• Shape 

• Shape Parameters 

• Reference Lesion Activity (Bq/cc) 

• Baseline Background activity 

(Bq/cc) 

• Target Lesion Activity (Bq/cc) 

• Surrounding Margin (mm) 

• Surrounding Mean PET Intensity 

• Surrounding SD PET Intensity 

• Surrounding Min PET Intensity 

• Surrounding Max PET Intensity 

• Age (years) 

• Sex 

• Height (m) 

• Weight (kg) 

• Injected Activity (MBq) 
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A.6.6. Renaming simulation objects 

Lesions and reference ROIs in the corresponding tables on the right side of the 

screen can be renamed (and the corresponding LesionParams.mat file updated), by 

selecting the object, right clicking on it, and selecting rename. A corresponding dialogue 

(see Figure A.11 and Figure A.12) is displayed where the new name can be typed 

manually or selected from a default list of names. 

 

Figure A.11: Renaming a reference region of interest, with a list of preset names available. 

 

Figure A.12: Renaming a lesion, with a list of preset names available. 
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A.7 Configure Tab 

In the configure window, the settings for the toolbox can be adjusted. 

A.7.1. General settings 

The general tab includes scanner and server settings, only accessible to admin users. 

 

Figure A.13: Configure tab for general settings 

Table A.8: Elements from the general settings sub-tab in Figure A.13 

Element Name Description 

List Scanner Settings 

The settings for the available scanners are 

listed, and only accessible to the admin user. The 

admin user can select a scanner from the list. 

Button Add  The admin user can add a scanner. 

Button Delete  The selected scanner is removed from the list. 

Button Save  The scanner settings are saved. 

Field 
Image Recon. 

Queue 

The admin user can add the directory for the 

reconstruction queue. 

Field Simulation Queue 
The admin user can add the directory for the 

simulation queue. 

Button Browse 

The user can use browse to select a directory 

from the file explorer instead of manual inserting 

it in the two fields above. 
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A.7.2. Project settings 

The project tab contains the list of projects for the user, including the parameters 

for each project.  

 

Figure A.14: Configure tab for project settings 

Table A.9: Elements from the project setting sub-tab in Figure A.14 

Element Name Description 

Panel 
Projects List for 

{User} 

The list of projects that the user has created are 

listed. The user can select a project and see the 

parameters on the screen. 

Button Show Location 
The location of the project file is opened in the File 

Explorer. 

Button Add  A new project is created. 

Button Delete  The selected project file is deleted. 

Button Star  
The user can select the default project that is opened 

when the user logs into the program. 

Panel 
{Project Name} 

Parameters 

The parameters for the selected project can be 

changed. 

Field 
Simulation Name 

Template 

The user can set a name to automatically name the 

simulation results. The user can still manually change 

the simulation name in the ‘Define Lesion Sub-Tab’. 
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Field Series Description 
The user can input the series description name to be 

identified in PACS using DICOM tag (0008,103E). 

Drop-Down 

List 
Image Units 

The user can set the units for the reconstructed 

images. The user can select from ‘Activity [Bq/cc]’ 

and ‘SUV-bw [g/ml]’. 

Drop-Down 

List 

Image Coordinate 

Units 

The user can select the coordinate system for the 

reconstructed images. The user can select from 

‘pixel’, ‘mm from centre’, and ‘mm from origin’. 

Field Raw Import Archive 
The user can enter the directory path for the raw 

imports, or use the browse button. 

Field 
Image Recon 

Archive 

The user can enter the directory path for the 

reconstructed images, or use the browse button. 

Field Simulation Archive 
The user can enter the directory path for the 

simulated images, or use the browse button. 

Button Browse 

The user can use the browse buttons to select the 

directory path for the field in line with the respective 

buttons. 

Field Target Host Name 
The user can enter the name of the target host that the 

DICOM files will be sent to. 

Field Target Port 
The user can enter the target port number that the 

DICOM files will be sent to. 

Field Target AET The user can enter the target DICOM node AE title. 

Field Source AET The user can enter the source DICOM node AE title. 

Checkbox Include CT 
When selected, the CT images are included in the 

DICOM file. 

Field 
Reconstruction 

Protocol Directory 

The user can enter the directory path for the 

reconstruction protocol, or use the browse button. 

Drop-Down 

List 

Default 

Reconstruction 

Protocol 

The user can select the default reconstruction 

protocol that will be used for this project, from the 

list of reconstruction protocols defined in the 

corresponding Configure / Recon settings (see A.7). 

Field Pushbullet Token 
The user can enter their Pushbullet ID for receiving 

notification alerts on their mobile device. 

Button Test Pushbullet 
The user can test the notification system to ensure it 

is active. 

Button 
Go to Pushbullet 

Website 
The website for the pushbullet is opened. 

Field Comments 
The user can add additional comments to the project 

file. 

Button Save  
The project parameters are saved under the project 

name in the projects list. 
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A.7.3. Recon settings 

The recon tab displays the reconstruction modes and parameters for each mode. 

 

Figure A.15: Configure tab for reconstruction settings 

Table A.10: Elements from the reconstruction sub-tab in Figure A.15 

Element Name Description 

Button Add  
The user can add a new reconstruction profile, with a 

unique profile name. 

Button Delete  
The user can remove a reconstruction profile from the 

profile names list. 

List Profile Names 
The reconstruction profiles are listed, and can be 

selected by the user to be viewed or deleted. 

List Profile Parameters 
The parameters for the selected reconstruction profile 

are displayed. 

Button Refresh  
The parameters for the selected reconstruction profile 

is reverted to default. 

Button Save  The reconstruction profile is saved. 
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A.8 Tutorials 

A.8.1. Importing Data 

Data can be imported on the ‘Data Retrieval Tab’, as seen in Figure A.3.  

(1) Select the scanner from the drop down ‘Scanner’ menu.  

(2) Next, select the date range using the following drop-down menu titled ‘Date 

Range’. 

(3) Click the button ‘Connect’ to load the data.  

 

Figure A.16: Tutorial - importing data from the scanner 

A list of patient files will appear in the table below.  

(4) Select a file and it will appear in the study investigator at the bottom of the 

window. Click the check box next to the file in the study investigator to select the 

study.  

(5) The ‘Anonymize Imported Studies’ checkbox can selected to provide patient 

privacy.  

(6) Once selected, the study can be imported by clicking the ‘Import Selected 

Studies’ button on the bottom right corner of the window.  

 

Figure A.17: Tutorial - selecting studies to import and whether to anonymize 

4 
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(7) If the file is to be anonymized, a window (Figure A.4) will appear which includes 

fields to change the patient’s name, surname, ID, and date of birth.  

(8) Click ‘Ok’ when finished anonymizing the patient information.  

  

Figure A.18: Tutorial - anonymization information 

(9) A new window will appear (Figure A.5) with the option to anonymize in place or 

create a copy. If the anonymization is done in place, the file downloaded to the 

LST will be overwritten with an anonymized version but will not affect the 

original file on the scanner.  

 
Figure A.19: Tutorial - anonymization data deletion 

The importing process may take a couple of minutes to complete. The imported 

studies will appear in the next tab (Image Reconstruction Tab). 

A.8.2. Reconstructing Data 

On the Image Reconstruction Tab, the imported patient files are listed in the 

‘Available Studies’ table.  
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(1) Select a study to be reconstructed from the table of available studies.  

(2) If the file that was not anonymized when imported, it can be anonymized by 

selecting the ‘Anonymize’ button and choosing whether or not to anonymize in 

place. To see how to do anonymization refer to the tutorial ‘A.8.1. Importing 

Data’.  

(3) Choose a reconstruction method from the drop-down list ‘Recon. Profiles’ on the 

top right of the screen. The reconstruction parameters for the selected method will 

appear in the table below.  

 
Figure A.20: Tutorial – available studies and reconstruction 

(4) Click ‘Queue Reconstruction’ to add the reconstruction to the job queue.  

(5) The job queue can be seen at the bottom of the tab.  

(6) To remove a job from the queue, select the job from the queue and click ‘Remove 

Job’.  

(7) When the queue is ready, click ‘Start Processing Service’ to start processing the 

job queue. The reconstructed files can be found on the ‘Lesion Insertion: Select 

Patient’ tab. 

 
Figure A.21: Tutorial – initial reconstruction 
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A.8.3. Define lesions 

On the Lesion Insertion tab, the first sub-tab (Select Patient) should automatically 

open. 

(1) Select the patient file that will be used for lesion synthesis.  

(2) If the study was newly added and does not appear, the list can be refreshed by 

clicking ‘Refresh’.  

 
Figure A.22: Tutorial – selecting a patient for lesion insertion 

(3) The preview of the selected study will be shown at the bottom of the page, with a 

3D view. The intensity of the image can be adjusted using the slider on the left of 

the 3D view. 

(4) Click the ‘Select Study’ button and it will open the study in the next sub-tab 

(Define Lesion).  

 

Figure A.23: Tutorial – viewing patient before selection  

(5) The 3D viewer shows the fused PET and CT data on the top of the screen, with 

information about the patient on the top bar.  

(6) Adjust the PET colormap and fusion factor on the right,  

(7) And intensity level on the left, until it is best for viewing.  
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(8) The focal point on the image can be selected by clicking on one or more views. 

Adjusting the focal point will populate the ‘Object Location’ fields, so that they 

do not need to be entered manually. 

 

Figure A.24: Tutorial – adjusting view during lesion insertion 

Before adding any objects, a reference object should be set in the ‘Define 

Reference Object’ panel. This allows the lesion intensity to be relative to another organ, 

typically the liver.  

(9) The reference object name is automatically populated with Ref_{reference object 

number}, but can be manually changed to the region name. Set the object 

location, either by manually typing in the coordinates or by selecting the focal 

point on the image. Enter the shape and radius values. ROIs can be removed by 

selecting from the list and clicking ‘Remove Reference Object’.  

(10) The object name is automatically populated with Object_{object number}, but 

can be manually changed to reflect the type of lesion. The location can be set 

manually or by selecting the focal point on the image. Select the shape and radius 

of the object.  
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(11) Adjust the PET intensity mode, level, and overlay method, as well as the CT 

intensity in Hounsfield Units and the overlay method. Add the lesion by clicking 

‘Add Object’ and repeat for as many lesions as needed. 

(12) A list of lesions to simulate will be populated as lesions are created. Select a 

lesion to remove, or create another lesion with the same parameters, but ensure to 

change location coordinates to prevent possible issues. 

(13) Select a reconstruction profile for the image reconstruction from the drop-down 

menu, 

(14) And adjust the parameters in the table or bed range if needed. If the same 

reconstruction is to be repeated with different parameters, select ‘Keep lesions’ to 

keep the patient and lesions in the ‘Define Lesion Sub-Tab’. Queue the simulation 

once all lesions are added, and the ‘Job Queue Sub-Tab will open. 

 

Figure A.25: Tutorial – defining lesions and reconstruction parameters 

(15) Jobs can be selected from the list to be removed from the job queue. 

(16) If the processing service is not already running, start it by selecting the green 

button at the bottom of the screen. A progress window will open, as is described 

in Section A.9 below. 
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Figure A.26: Tutorial – job queue and begin processing 

A.8.4. Check lesions 

On the last sub-tab of the Lesion Insertion tab (Proof Simulation), the simulated 

lesions can be checked.  

(1) The list of files with simulated lesions can be seen at the top of the tab. Select a 

patient file to be viewed. 

(2) The simulated lesions and their properties are shown on the top right of the tab, as 

well as the reference ROI. Reference ROIs and lesions can be selected from the 

lists. 

(3) The selected lesion or ROI will be shown on the images, with the cross-hairs 

pinpointing the location. The view can be adjusted using the slider and menu in 

the bottom right. 

(4) Once the data are reviewed, the data can be exported to a file folder. 

 

Figure A.27: Tutorial – reviewing lesions 
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A.9 Image Reconstruction and Lesion Synthesis Service 

Image reconstruction and lesion simulation are computationally demanding. 

Depending on computer resources, these may require minutes to hours per image series. 

These processes are implemented as a computer service, for serial processing, which is 

especially advantageous in settings where the computer is acting as a web app service for 

multiple users. The lesion synthesis toolbox processing service 

(LSTProcessingService.m) is a MATLAB script that monitors directories for queued 

reconstruction and simulations. These are run one at a time using parallel processing for 

multiple bed positions.  

The LST Processing Service can be launched from within the LST Toolbox, 

where a separate MATLAB instance is started in the background, enabling to continue 

using the LST Toolbox. Likewise, the LST Processing Service can be launched in 

MATLAB command line using the following parameters: 

LSTProcessingService(command, dataDirs) where command can be any of the 

following: 

• 'start' - start the server as a background service. 

• ‘stop' or ‘kill’ - stop the server. 

• 'one time' - run the processing routine once for the existing files and then stop 

(i.e., not as a service) 

Example uses are: 

• LSTProcessingService('start',{'F:\LST Temp\Simulation Queue','F:\LST 

Temp\Recon Queue'}) 

• LSTProcessingService('stop') 

• LSTProcessingService(‘one time’,{'F:\LST Temp\Simulation Queue','F:\LST 

Temp\Recon Queue'}) 


