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Abstract 
This thesis examines the use of artificial intelligence (AI) for enhancing photon counts in 
ventilation/perfusion (V/Q) scans. V/Q scintigraphy is essential in the nuclear medicine field for 
diagnosing pulmonary embolism (PE), a severe and potentially life-threatening condition. 
Traditional V/Q scanning methods are often lengthy, which not only cause discomfort for patients, 
and thus possibly affect the quality of the images obtained, but also has contributed to their 
declining use and the uprise of computed tomography pulmonary angiography (CTPA). This thesis 
aims to address these issues by proposing AI-based techniques that enhance low-count images in 
V/Q scans, with the aim of reducing scan times while maintaining accurate diagnoses. 

The research began with a systematic review to assess the role of AI in V/Q scans. This review 
identified several promising areas for further research, including image enhancement, artifact 
removal, and the creation of pseudo-planar images from single-photon emission computed 
tomography (SPECT). This latter aspect is relevant since there has been research to support the 
transition from traditional planar imaging towards SPECT; thus, alternatives are needed that help 
physicians adapt. 

A critical part of the research was evaluating the impact of various image resizing techniques on 
the noise characteristics inherent in V/Q images. This involved a comparative analysis of standard 
upsampling and downsampling methods, such as linear interpolation, against techniques designed 
to preserve Poisson counting statistics. These included linear interpolation followed by Poisson 
resampling for upsampling and sliding window summation for downsampling. Image quality was 
assessed using the structured similarity index (SSIM) and the logarithm of mean squared error 
(MSE), to compare resized images with those at the target resolution. The findings revealed that 
upsampling with Poisson resampling after linear interpolation yielded images consistent with 
correct photon count properties at the target resolution. In downsampling, while linear 
interpolation and sliding window summation were both effective at a 2x reduction, the latter 
method produced realistic images at a 4x reduction. 
Furthermore, the thesis showcases the development, training, and validation of a deep learning 
model tailored for count enhancement using scintigraphic images. This model successfully created 
diagnostic quality images from simulated low-count images, which were derived from diagnostic-
quality images at 10% counts, with full-count images serving as the ground truth. The effectiveness 
of various loss functions was determined through both qualitative and quantitative analyses. It was 
observed that a combination of L1, perceptual, and adversarial losses yielded images most 
comparable to the ground truth. These AI-enhanced images underwent clinical evaluation by both 
experienced and novice V/Q scan readers. The assessment was based on three categories: low, 
moderate, and high similarity. The general consensus among the readers indicated a moderate to 
high similarity, suggesting that the AI-enhanced images retained essential diagnostic features. 
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Chapter 1: Introduction 

1.1 Problem Statement 

In nuclear medicine, ventilation/perfusion (V/Q) scintigraphy is a critical diagnostic tool for the 
detection of pulmonary embolism (PE), a potentially life-threatening condition. Despite its clinical 
importance, a fundamental challenge persists in the form of prolonged acquisition times for 
scintigraphic images. Such extended durations often lead to patient discomfort and, critically, can 
degrade image quality due to patient movement. Importantly, long acquisition times also constitute 
one of the major limitations to V/Q scans with respect to other modalities for diagnosing PE, such 
as computed tomography pulmonary angiography (CTPA). However, shortening image acquisition 
times, while desirable, can result in low count scintigraphic images, where the clarity and 
reliability of the images are inherently compromised. Consequently, there is a pressing need for 
innovative solutions to enhance these low count images to increase diagnostic precision. In recent 
years, nuclear medicine studies have been transitioning from two-dimensional planar imaging to 
three-dimensional SPECT imaging by rotating the camera around the patient and reconstructing a 
3D tomographic volume of ventilation and perfusion from the acquired projection images. The 
development of techniques for generating pseudo-planar images from raw SPECT projection data 
is desirable as a fallback in the presence of SPECT image artifacts such as those associated with 
patient motion. This advancement would not only assist less experienced physicians in interpreting 
complex SPECT data but also improve the overall efficiency and accuracy of diagnoses in nuclear 
medicine, particularly for V/Q scans. 

1.2 Thesis Statement 

This thesis explores the application of deep learning techniques to enhance V/Q scintigraphic 
images, specifically focusing on augmenting the quality of low-count images and generating 
pseudo-planar images from raw SPECT projection data. The primary goal is to leverage deep 
learning models to enhance the clarity and diagnostic value of scintigraphic images characterized 
by low photon counts. Raw SPECT data typically contains lower count and lower grid size 
compared to planar acquisition data. Thus, a critical preprocessing step in preparing these images 
for neural network training involves resizing them to a uniform grid size. This resizing is done 
using Poisson resampling correction for upsampling and sliding window summation for 
downsampling. By developing and implementing innovative deep learning approaches, this 
research aims to significantly improve the interpretation of V/Q scans, thereby enhancing the 
diagnostic process in nuclear medicine. 
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1.3 Main Contributions 

This research is situated at the intersection of computer science and nuclear medicine, aiming to 
innovate in several key areas:  

1- The Role of Artificial Intelligence (AI) in V/Q Scintigraphy: This systematic review 
contextualizes and critiques the current standing of AI applications in V/Q scintigraphy. I 
was the 2nd author on this publication. My contributions included carrying out a jointly 
reviewed literature search, undertaking data extraction, and co-writing portions of the 
manuscript. 
 

Jabbarpour A, Ghassel S, Lang J, Klein R, Moulton E. “The Past, Present, and 
Future Role of Artificial Intelligence in Ventilation/Perfusion Scintigraphy: A 
Systematic Review.” Seminars in Nuclear Medicine, vol. 53, no. 6, 2023, pp. 
752–65, https://doi.org/10.1053/j.semnuclmed.2023.03.002. 
 

2- Techniques for Resampling Scintigraphic Images: We developed robust methodologies for 
resizing scintigraphy images, in a manner that preserves photon counting statistics and 
associated noise properties. These methods provide a robust tool for practitioners, ensuring 
that the integrity and quality of resized images are maintained, a crucial aspect for accurate 
image analysis, particularly in the context of machine learning algorithms where image 
size standardization is common practice. I was the first author of this publication. This 
work has been submitted to Physics in Medicine and Biology and a provisional patent has 
been submitted.  
 

Ghassel S, Jabbarpour A, Lang J, Moulton E, Klein R. “The effect of resizing on 
the natural appearance of scintigraphic images: an image similarity analysis,” 2023. 
(Submitted) 
 
Eric Moulton (Jubilant), Siraj Ghassel (Ottawa Hospital Research Institute), 
Jochen Lang (University of Ottawa), Ran Klein (Ottawa Hospital Research 
Institute), Indranil Nandi (Jubilant); Jubilant-DraxImage, Methods and Techniques 
of Resizing of Scintigraphy Images. Provisional Patent Application: United States 
of America Patent Office, 63/584,367. 
 

3- Deep-Learning Model for Count Enhancement: At the heart of this thesis is the 
development and validation of a deep-learning model aimed at augmenting counts in 
scintigraphic images. The following abstracts have been presented at the annual conference 
of the Society of Nuclear medicine and Molecular Imaging (SNMMI); University of 
Ottawa, Faculty of Medicine research day; and University of Ottawa, Faculty of 
Engineering poster day.  

Ghassel S, Jabbarpour A, Lang J, Moulton E, Klein R. “Count Enhancement of 
Perfusion Images in Lung Scintigraphy using Artificial Intelligence,” J. Nucl. Med., 
vol. 64, no. supplement 1, p. P1240, Jun.2023 (Abstract) 
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A manuscript is in preparation to develop a deep learning model for the count enhancement 
of scintigraphic images. 

1.4 Thesis Structure 

This thesis represents an exploration into the application of artificial intelligence in V/Q 
scintigraphy. The research initiated with approval from the Ottawa Hospital Research Ethics 
Board, enabling the collation of patient data from The Ottawa Hospital. In adherence to ethical 
standards, all personally identifiable information were anonymized, ensuring patient 
confidentiality. 
The thesis begins with a background chapter that lays the groundwork for understanding the 
context and technical aspects of the research. This chapter explains the fundamental principles of 
nuclear medicine, the intricacies of V/Q scintigraphy, and the role of AI in enhancing medical 
imaging. The third chapter presents a systematic review on the current state of AI in V/Q scans. 
This review serves a dual purpose: (1) it confirms the unmet need for accelerating V/Q scan image 
acquisition and (2) establishes the relevance and potential of AI in this domain.  
In response to the identified need for accelerating image acquisition and the potential of AI, the 
fourth chapter focuses on image spatial resampling techniques, an essential preprocessing step for 
neural network training. This involves standardizing the spatial grid sizes of image inputs to ensure 
count and noise characteristics are preserved in the resizing process. The chapter presents a novel 
method developed to resize images while preserving the inherent noise characteristics of 
scintigraphic images. 

Chapter five forms the core of the thesis and builds on the previous chapters. It details the 
formulation, training, and validation of a deep-learning model aimed at count enhancement of 
scintigraphic images. This chapter represents the practical application of the concepts and 
methodologies discussed earlier, showcasing the actual development and testing of the AI model.  

The sixth and final chapter synthesizes the key findings of the research, examines the limitations 
encountered and proposes future research directions, underlining areas where further 
advancements can be made.  
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Chapter 2: Background and Related Works 

2.1 Pulmonary Embolism 

Lungs perform the critical function of exchanging gasses between the ambient air and the blood 
that delivers these gasses to and from all the body organs. To perform this gas exchange, blood is 
collected from the body via the venous system. The smaller venous tributaries come together to 
form the largest veins (the superior and inferior vena cava) which terminate in the right chambers 
of the heart. The right heart pumps the blood via the pulmonary arteries to the two lungs. This 
blood is low in oxygen and high in carbon-dioxide. In the lungs, the pulmonary veins bifurcate to 
smaller and smaller vessels terminating in the capillaries. 
These capillaries encase small air sacks called alveoli producing a large surface area where gas 
exchange can readily occur. Concentrated carbon dioxide in the blood is diffused to the air and 
concentrated oxygen in the air is diffused to the blood (where is binds to red blood cells using the 
hemoglobin molecule).  
The oxygenated blood flows through the capillaries which gradually merge to form the pulmonary 
veins. These pass blood to the left chambers of the heart that pumps the blood to the aorta and from 
there to the rest of the body. In doing so, the closed-loop circulatory system is complete with the 
blood delivering essential oxygen to the body and carrying away its waste carbon dioxide. 
The lungs are enclosed in the thoracic cavity, between the rib cage and diaphragm. As the 
diaphragm, a large muscle above the liver and stomach, contracts and relaxes it expands and 
contracts the lungs respectively. Correspondingly, the lungs inhale and exhale ambient air via the 
bronchi, tracheal tube, mouth, and nose to exchange the air in the alveoli with the atmosphere 
around us. 

The typical human has two lungs. The right lung is comprised of three main lobes, while the left 
has two (Figure 2.1). These are further divisible into segments and subsegments based on the 
branching of the bronchi and blood vessels that make up the lung. With the gradual decrease of 
blood vessels to the lungs and the eventual restriction by the capillaries (6 μm diameter), even cells 
in the blood can struggle to pass through them. In fact, some of the larger cells in the blood (as 
large as 8 μm in diameter) must deform to pass through these capillaries. Larger and non-
deformable objects can become lodged in these blood vessels leading to blockages. These 
blockages, depending on their location, can restrict perfusion to a lung subsegment, segment, or in 
extreme cases even entire lobes. 
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Figure 2.1- Segmented CT lungs. From left to right, the lung orientations are axial, anterior, and left side with each lung segmented 
into their respective lobes. 

2.1.1 Understanding Pulmonary Embolism 

Pulmonary embolism is a life-threatening medical condition that requires immediate attention and 
intervention [1]. It occurs when one or more arteries in the lungs become blocked by blood clots. 
This obstruction disrupts the normal blood flow to the lungs and can result in various 
complications, including chest pain, shortness of breath, and, in severe cases, sudden death [1]. 

The clinical presentation of PE can vary from one patient to the other, depending on factors such 
as clot size, lung involvement, and overall health. PE is part of a broader spectrum of conditions 
known as venous thromboembolism (VTE) [2], which also encompasses deep vein thrombosis 
(DVT). DVT involves the formation of blood clots in the deep veins, often preceding the 
occurrence of PE. Typically, PE arises when these DVT clots dislodge and travel through the 
bloodstream to the lungs. 

Diagnosing PE can be challenging due to its variable and non-specific symptoms. A high level of 
suspicion, thorough assessment of risk factors, and appropriate use of diagnostic tests are crucial. 
These tests may include D-Dimer blood tests [3], chest x-rays [4], (CTPA) [5], and (V/Q) scans 
[6].  

The severity of PE and the potential for life-threatening complications, such as right heart failure 
and recurrent embolism, underscore the urgent need for treatment. Early interventions aim to 
prevent clot growth, dissolve existing clots through thrombolytic therapy, and restore normal blood 
flow in the lungs [7]. Anticoagulant medication is commonly prescribed, while surgical procedures 
may be necessary in severe cases [2]. 

2.1.2 Physiology of PE 

DVT  consists of three factors: blood stasis, endothelial damage, and hypercoagulability [8]. Any 
disruption to these elements can disrupt the balance of the blood's natural anticoagulant properties 
and promote clot formation.  

Once formed, the DVT clot may either remain in place, adhering to the vein wall, or become an 
embolus that travels through the bloodstream. Eventually, the embolus may reach a point where 
the vessel diameter becomes narrower than the embolus itself. In the case of PE, these emboli 
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traverse the right heart chambers and lodge in the pulmonary arteries, obstructing the blood flow 
to the lungs. 

 

 
Figure 2.2- Embolus forming in the right lung and lodging in the pulmonary arteries.Image generated from OpenAI DALLE-2. 

The consequences of this blockage are immediate and varied. Firstly, the impaired blood flow 
creates a ventilation-perfusion (V/Q) mismatch in the lungs [1]. Although the affected areas 
continue to receive air, the compromised blood supply impairs gas exchange, resulting in reduced 
oxygen levels in the blood, known as hypoxemia [9]. 
PE can also lead to chronic complications such as post-embolic syndrome and chronic 
thromboembolic pulmonary hypertension (CTEPH), both of which profoundly affect patients' 
quality of life [10]. Post-embolic syndrome, characterized by persistent shortness of breath, 
reduced exercise capacity, and leg discomfort, can manifest in up to half of PE patients [7]. On the 
other hand, although less common, CTEPH represents a severe form of pulmonary hypertension 
resulting from unresolved thromboembolic occlusion of pulmonary arteries. 
The obstruction of pulmonary arteries may cause increased pressure on the right side of the heart 
as it tries to pump blood against the resistance [11]. Over time, this strain can lead to serious 
complications such as right heart failure or pulmonary hypertension, particularly in cases of 
untreated or extensive PE. 
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2.1.3 The Prevalence and Impact of PE 

PE is far from being an uncommon medical event that significantly contributes to global morbidity 
and mortality [12]. Estimates indicate that developed countries experience approximately 60-70 
cases of PE per 100,000 population annually [13], although the actual incidence might be higher 
due to underdiagnosis or misdiagnosis [14]. This prevalence makes PE a pressing concern for 
healthcare providers, necessitating continuous advancements in prevention, diagnosis, and 
management. 
Mortality rates associated with PE are alarmingly high, particularly when the condition remains 
untreated or is not promptly diagnosed [12]. Acute PE ranks as the third leading cause of 
cardiovascular death, following heart disease and stroke, further underscoring the urgency of early 
detection [15]. 
The economic impact of PE should not be underestimated. It contributes to prolonged hospital 
stays, readmissions, and long-term treatments, resulting in substantial healthcare costs [16]. 
Indirect costs also arise from lost productivity due to PE-related disability or death. Therefore, 
implementing efficient diagnostic and management strategies for PE not only saves lives but also 
demonstrates economic prudence. 

2.1.4 Patient Management: Strategies and Approaches to Dealing with PE 

Over the years, considerable progress has been made to improve the diagnosis and treatment of 
PE, with patient outcomes seeing significant improvement. One such key development, as 
highlighted by Wells et al. in the article "Diagnosis of Venous Thromboembolism: 20 Years of 
Progress," [2] is the implementation of risk stratification to guide management strategies for 
patients with PE. 

The first step in the management of a patient suspected of PE involves risk stratification, where 
patients are classified as high-risk, intermediate-risk, or low-risk based on their clinical condition 
and diagnostic test results. High-risk patients often exhibit hemodynamic instability or cardiac 
arrest, while low-risk patients demonstrate normal blood pressure and have a low score on the 
Pulmonary Embolism Severity Index (PESI) [17]. Those falling in between are categorized as 
intermediate-risk patients. 

Immediate therapeutic intervention is required for high-risk PE patients. The preferred strategy 
typically involves systemic thrombolysis, where medication is given to dissolve the blood clot. 
However, in some cases, surgical or catheter-directed thrombolysis may be considered. These are 
more invasive procedures and are typically reserved for when the patient does not respond to 
systemic thrombolysis. 
The management of intermediate-risk and low-risk patients involves the use of anticoagulation 
therapy. The options include Vitamin K antagonists, direct oral anticoagulants (DOACs), or 
heparin, which effectively prevent the clot from growing and new clots from forming. The choice 
of agent depends on various factors including the patient's clinical characteristics, preference, and 
potential for drug interactions. 

Moreover, the duration of anticoagulation therapy is another crucial consideration in the 
management of PE. Wells' article underlines that the decision should be made based on a balanced 
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assessment of the risk of recurrent VTE and the risk of bleeding associated with prolonged 
anticoagulation. For most patients, a minimum duration of anticoagulation of three months is 
recommended. 
An integral part of patient management is the prevention of PE recurrence. This means lifestyle 
changes such as increased physical activity and weight loss in overweight individuals, as well as 
addressing modifiable risk factors like smoking and high blood pressure. Long term patient 
monitoring may include follow-up imaging to assess the resolution of PE with therapy. 

2.2 Nuclear Medicine Principles and Image Acquisition 

The field of nuclear medicine began with the ground-breaking discoveries of X-rays by Wilhelm 
Conrad Roentgen in 1895 and natural radioactivity by Henri Becquerel in 1896. These seminal 
findings paved the way for the development of radiotracers—substances emitting radiation that 
can be tracked within the body. Radiotracers allowed physicians to visualize the functioning of 
organs and systems in real-time, thereby facilitating the diagnosis and treatment of diseases. 
Beyond diagnosis and treatment, nuclear medicine contributes to research and drug development. 
By visualizing and quantifying physiological processes, it offers researchers valuable insights into 
the pathophysiology of diseases and the efficacy of novel treatments. 

2.2.1 Radiotracers: The Core of Nuclear Medicine 

All nuclear medicine depends on the use of radiopharmaceuticals [18]. Radiopharmaceuticals, 
commonly known as radiotracers, consist of a radioactive atom chosen for its detectable radiation 
emissions, combined with a molecule or compound that exhibits a specific affinity for tissues. This 
property allows radiotracers to serve as biological markers, tracing the movement and 
concentration of the associated molecule within the body. 
Various types of radioisotopes exist, each possessing distinct properties chosen based on the 
specific diagnostic objective. For example, technetium-99m (99mTc) [19], the most used 
radioisotope in lung imaging, is favored for its ideal physical characteristics, including a short half-
life and the emission of low-energy gamma rays that are easily detectable and cause minimal tissue 
damage.  

Upon administration, the radiotracer circulates throughout the body and accumulates in specific 
organs, bones, or tissues, depending on its ligand. As it undergoes radioactive decay, the isotope 
emits gamma radiation, which is detected by a gamma camera [20]. This information is then used 
to generate images that unveil the functional aspects of organs and tissues. 

2.2.2 The Gamma Camera: Transforming Gamma Rays into Images 

At the core of the gamma camera lies the scintillation crystal, typically composed of sodium iodide 
doped with thallium [21]. When a gamma photon collides with the crystal, it generates a brief flash 
of visible light, known as scintillation. An array of photomultiplier tubes (PMTs) detects these 
flashes, amplifies the signal, and converts it into an electrical pulse. Processing of the electronic 
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signals from all PMTs by a computer (using Anger logic) decodes the location of the photon 
absorption in the crystal and measures the energy of the photon. This series of transformations 
enables the gamma camera to render the previously invisible gamma rays into a visible format. A 
good quality image requires the detection of millions of individual photons by the gamma camera. 

However, this process would not be possible without collimators, which consist of lead 
honeycombs placed in front of the scintillation crystal. Collimators play a crucial role in filtering 
only the incoming gamma photons along straight paths of the collimator (typically perpendicular 
to the scintillating crystal), ensuring that the resulting image accurately represents the distribution 
of the radiotracer within the body. By filtering out photons from oblique angles, collimators 
significantly contribute to the sharpness and resolution of the resulting image, but at the cost of 
very low counting efficiency (only a small fraction of the photons hitting the collimator penetrate 
it). 

As the gamma camera captures and records gamma photon events, a computer processes this 
information to generate an image. This image provides a snapshot of the spatial distribution of the 
radiotracer within the body at a specific moment, offering insights into the body's physiology. 
 

 
Figure 2.3 -The composition of a gamma camera. 

Since its invention in the 1950s, the gamma camera has undergone significant advancements [22]. 
Modern gamma cameras often feature multiple detector heads that can rotate around the patient, 
capturing different views and enabling the generation of 3D images. Moreover, improvements in 
detector technology, data acquisition systems, and reconstruction algorithms have greatly 
enhanced the image quality, resolution, and diagnostic value of scans. 
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2.2.3 Planar Imaging 

In the mid-20th century, advancements in detector technology and image reconstruction algorithms 
[23]–[25] pushed the emergence of planar imaging, the earliest form of nuclear imaging. Namely, 
Hal Anger in the 1950’s developed the first gamma cameras which could efficiently detect the 
gamma-ray emissions from radiotracers in the patient to generate planar (i.e., two dimensional) 
images of the radiotracer distribution within the patient [26]. The image is a projection of the 
structures within the (three-dimensional) patient – like a shadow of a 3D object. The camera can 
be positioned to capture planar images from various angles, such as anterior (front), posterior 
(back), and lateral (side). 
While planar imaging has its strengths, it also has limitations. On one hand, it is straightforward, 
efficient, and suitable for many diagnostic purposes, including bone scans [27], thyroid scans [28], 
and renal scans [29]. On the other hand, planar imaging lacks depth information [30], making it 
challenging to differentiate between overlapping structures in the two-dimensional image. This 
limitation can potentially obscure certain areas, leading to potential misinterpretations. 
Furthermore, the radiation emitted from deeper regions of the body, must traverse more tissue than 
nearer regions, resulting in signal attenuation and scatter. Consequently, nearer objects present a 
clearer and more intensely in the image than far objects. 
 

2.2.4 Single Photon Emission Computed Tomography (SPECT)  

The introduction of Single Photon Emission Computed Tomography (SPECT) in the field of 
nuclear medicine brought about an advancement from two-dimensional planar imaging to the 
three-dimensional representation of biological processes [31]. SPECT was developed to overcome 
the limitations of planar imaging, particularly the lack of depth information and challenges in 
visualizing overlapping structures. With SPECT, medical professionals and researchers gained the 
ability to explore the human body in three dimensions, obtaining comprehensive, multi-angular 
images that provide greater accuracy in diagnosis and insights into function. 

SPECT operates on the same fundamental principle as planar imaging, detecting the gamma 
radiation emitted by radiotracers administered to the body. However, SPECT uses a robotic gamma 
camera that rotates around the patient and captures a series of two-dimensional images from 
various angles around the patient's body [32]. These images, called projections, are then processed 
by a computer algorithm such as filtered back-projection [33] or iterative reconstruction [34]. The 
outcome is a three-dimensional tomographic image that can viewed as slices through the patient, 
offering depth perception beyond what planar imaging can achieve. Whereas in planar images 
three dimensional (3D) structures overlap orthogonal to the projection plane, in 3D tomographic 
images these 3D structures are spatially separated. 

2.2.5 Count Statistics and Image Noise 

Nuclear medicine as a discipline relies on counts of radioactive decay events to visualize and 
interpret functional processes within the body [35]. Radioactive decay is inherently a random 
process [35]. The radioactive atoms in a radiopharmaceutical, decay at random intervals [36]. Yet, 
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given a sufficiently large number of these atoms, their average decay rate becomes predictable, 
following the well-documented laws of radioactive decay [35]. The number of disintegrations 
detected over a particular time are referred to as counts [37]. Count statistics, therefore, delve into 
the probabilities and distributions associated with these counts [37]. 

The number of detected events in a nuclear medicine study follows a Poisson distribution, a 
fundamental concept in count statistics [38]. Given a mean number of detected events, l, the 
variance of the number of detected events is also l. This means that the relative fluctuation or 
noise, often denoted as the standard deviation divided by the mean, decreases as the square root of 
l [38]. Practically, this implies that acquiring more counts (higher l) results in a better signal-to-
noise ratio, leading to clearer and more reliable images [37]. 
 

𝑃(𝑋 = 𝑘) = '𝑒("#)𝜆%*/𝑘!	 

with 𝑉𝑎𝑟(𝑋) 	= 	𝜆 and 𝜎/𝜆 = 1/√𝜆  

 

Equation 1 

 

 

 

However, acquiring images in nuclear medicine is not merely about maximizing counts. There is 
a delicate balance to maintain. More particularly, increasing counts often involves administering 
higher doses of radiopharmaceuticals or increasing the scan duration [36]. Both have implications: 
higher radiation doses pose risks to patients, and longer scans can lead to patient discomfort, 
increased potential of motion artifacts, and decreased clinical throughput [39].  
Noise in nuclear medicine does not simply arise from the inherent randomness of radioactive 
decay. The detection process itself introduces noise. Detectors, while designed to be efficient, are 
not perfect. Not every gamma photon emitted from a decaying atom in the body gets detected. 
Those that do interact may not do so perfectly, leading to scattering or partial energy deposition 
[39]. These imperfect interactions, along with electronic noise in the imaging system, contribute 
to the overall noise in a nuclear medicine image. 

2.3 Lung Scintigraphy: A Key Diagnostic Tool in Pulmonary Embolism 

2.3.1 Defining Lung Scintigraphy: What It Is and Its Importance in Nuclear Medicine 

Lung scintigraphy, also known as a lung scan, is a nuclear medicine imaging test widely used to 
investigate pulmonary function and blood flow, making it a crucial tool for diagnosing and 
managing various lung conditions [40]. In the context of PE, it can easily visualize the absence of 
blood flow due to blood clots that obstruct blood vessels in the lungs which are otherwise much 
smaller than the spatial resolution of the gamma camera. 
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A lung V/Q scan consists of two complementary scans: a ventilation scan (V) and a perfusion scan 
(Q).  While protocols can vary somewhat between clinics, herein we focus on one such protocol 
as used at The Ottawa Hospital, and to capture the data used in this thesis. 
The ventilation scan evaluates airflow to the lungs. 370-555 MBq (10-15 mCi) of 99mTc-
Pertechnetate is added to a Technegas machine [41], where it is heated and burned in a carbon 
crucible in an oxygen free environment (under argon gas). This produces a 99mTc-labelled fine 
particle soot, which the patient inhales. The soot penetrates deep into the smallest airways in the 
lungs (alveoli) where it becomes lodged. The patient inhales the Technegas, then lays under the 
camera with the technologist monitoring the photon count rate to achieve a pre-defined target 
range. The gamma camera then captures images of ventilated regions of the lung, enabling 
clinicians to identify areas of ventilation deficits (defects), Figure 2.4. 
The perfusion scan, on the other hand, assesses blood flow to the lungs. 148-185 MBq (4-5 mCi) 
of 99mTc-macroaggregated albumin (MAA) or a half-dose of (74-93 (2-2.5 mCi)) for pregnant or 
pulmonary hypertension patients is injected into the patient's bloodstream. As the radiotracer 
travels through the lungs with the blood, the MAA particles lodge in the capillaries of the lung. 
The gamma camera records the activity distribution, highlighting perfused regions. Obstructed 
regions, where blood flow is compromised, present as low count regions, and are referred to as 
perfusion defects, Figure 2.4. 

 

 
Figure 2.4- Ventilation-perfusion (V/Q) planar images for pulmonary embolism (PE) detection in six views. Red arrows indicate 
mismatched perfusion defects (V/Q mismatches) corresponding to a positive diagnosis of PE. ANT, anterior; LAO, left anterior 
oblique; LPO, left posterior oblique; POST, posterior; RAO, right anterior oblique; RPO, right posterior oblique. 

Because perfusion imaging is performed immediately after the ventilation imaging and using the 
same radioisotope (99mTc) for both scans, the perfusion image is contaminated by the ventilation 
signal. To overcome this, the administered activity of MAA is intentional to achieve more than 
four times the counts than in the ventilation image. Thus, the perfusion signal “swamps out” the 
ventilation signal. 
SPECT acquisitions are captured using a 128×128 matrix, with energy windows set at 140±7.5% 
(129-150) and a lower scatter range of (108-129). The dual headed gamma camera is programmed 
to acquire 64 views per head over 180° rotation, with a duration of 15 seconds for ventilation and 
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8 seconds for perfusion. Planar acquisitions are captured on a 256×256 matrix for six standard 
projections. Ventilation images are acquired until either 150,000 counts per image are achieved or 
300 seconds elapse, whichever comes first. For perfusion images 600,000 counts per image or 300 
seconds are targeted. Figure 2.5 demonstrates a typical lung V/Q protocol at The Ottawa Hospital. 

 
Figure 2.5- Timeline of a lung V/Q protocol at The Ottawa Hospital. Ventilation and Perfusion are performed for both planar and 
SPECT. ANT, anterior; LAO, left anterior oblique; LPO, left posterior oblique; POST, posterior; RAO, right anterior oblique; 
RPO, right posterior oblique. 

2.3.2 Interpreting Lung Scintigraphy: A Guided Approach Based on PIOPED and EANM 
Guidelines 

The Prospective Investigation of Pulmonary Embolism Diagnosis (PIOPED) [42] guidelines offer 
a systematic approach to interpreting V/Q scans. Based on studies of PE validated by invasive 
angiography, these guidelines lean heavily on the segmental and lobar structure of the lungs for 
their categorizations. They classify lung V/Q image patterns based on the observation of these 
segments and lobes into: 

1. Normal: There is a homogeneous distribution of activity across all lung segments and lobes 
in both ventilation and perfusion. 

2. Mismatch: A situation where a perfusion defect is evident within specific segments or 
lobes, even when ventilation remains active. This is indicative of PE. 

3. Reverse Mismatch: This reveals a ventilation defect in certain segments or lobes while 
preserving perfusion, which is often a sign of airway obstruction. 

4. Matched Defect: A defect is observed in both ventilation and perfusion within particular 
segments or lobes, suggesting chronic lung conditions. 

From the PIOPED's standpoint, a high-probability scan, which often involves two segmental 
mismatches, indicates the presence of PE, and prompts immediate therapeutic actions. In contrast, 
a scan that demonstrates low or intermediate probability (< two segmental matches) often 
necessitates a more in-depth diagnostic review. In parallel, the European Association of Nuclear 
Medicine (EANM) guidelines [43] considers very high probability of PE if there is 1 segment or 
≥ 2 subsegments mismatches. It’s considered non-PE diagnosis if there are ≤ 1 subsegment 
mismatches.  

2.3.3 Planar and SPECT Imaging in Lung Scintigraphy 

Planar imaging was pivotal in establishing lung scintigraphy. However, its limitations in portraying 
depth and detailed pathologies were evident from the beginning. To overcome this limitation, 
planar projections are acquired for multiple angles and the interpreting physician must piece 
together in their mind the presence, location, size, and severity of defects based on consistent 
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patterns across multiple projections. SPECT seeks to resolve this shortcoming of planar lung 
scintigraphy by adding three-dimensional imaging to enhance the visualization of pulmonary 
structures, by reducing overlap between structures, improved localization, and increased defect-
to-tissue image contrast. Research, including studies by Zuckier [44], pinpointed SPECT’s 
heightened sensitivity in detecting subtle, peripheral lung defects.  
SPECT imaging is not without its pitfalls. For one, the projection data (acquired prior to image 
reconstruction) is not all captured simultaneously. As the camera rotates around the patient, 
positioning is assumed consistent, but this assumption may be violated in the presence of patient 
motion. Accurate motion correction can be tedious and is not always reliable, leaving image 
artifacts in the reconstructed SPECT that cannot always be identified as motion artifacts. 
Furthermore, there has been concern that the higher sensitivity of SPECT (over planar) for 
visualizing small defects, may result in overcalling disease and overtreating patients. For those 
practitioners who wanted to fall back on true and tested planar imaging during SPECT, pseudo-
planars were introduced to SPECT processing. 

Two methods were developed to generate pseudo-planar images. The first combined sequential 
SPECT projections – typically three – in a summed angular technique [45]. This approach produces 
higher count images (less noise) than a single projection, but still significantly less than a full 
quality planar acquisition due to the shorter acquisition times of individual SPECT projections. A 
second, more sophisticated technique, re-projects SPECT images by modeling the associated 
physics to produce a pseudo-planar using all the image data [46]. This approach has not been 
widely accepted as the images appear over-smoothed and can have spontaneous artifacts associated 
with inaccurate estimation of photon attenuation maps, which are crudely estimated from the 
scintigraphy data. 
Many clinicians that were trained to read planar lung scintigraphy, are apprehensive to transition 
to SPECT imaging. Thus, a dichotomy in practices exists [47]. A need still exists for robust pseudo-
planar generation from SPECT data. Such a solution must generate realistic looking projections 
that reliably preserve disease patterns in the imaging data. Deep-learning, generative algorithms 
may be uniquely suitable for this task. Essentially, they could follow either of the above-mentioned 
approaches: (1) either enhance the image quality of individual SPECT projections to artificially 
increase the imaging count statistics and/or image spatial resolutions, or (2) they could use all the 
imaging data (before or after SPECT reconstruction) to generate few projection images. 
Regardless, deep-learning approaches have shown ability to generate realistic images surpassing 
conventional image filtering methods. 

2.4 Deep Learning 

Deep Learning (DL), as defined by LeCun et al. [48], is a branch of machine learning that employs 
a hierarchical stacking of multiple levels of representation, each interlaced with non-linear 
functions. This architecture allows the exploration of a broader range of representations, 
particularly advantageous when the application requires invariance to certain variations in the 
input data. In essence, these layers of representation are often a weighted aggregate of the inputs, 
leading to an incremental rise in the level of abstraction achieved with each added layer. Notably, 
in image processing, initial layers typically detect simple elements like edges, progressing to more 
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complex patterns and eventually recognizing complete objects. This layered learning process 
bypasses the need for manual feature engineering, streamlining the model training process. 

 
A key learning technique in DL is Stochastic Gradient Descent (SGD) [48]. This method involves 
randomly selecting input vectors and averaging the error between the model's predictions and 
actual outputs for each vector. This error is then backpropagated through the network, allowing for 
the adjustment of each learned weight by calculating partial derivatives [49]. Consequently, each 
weight's contribution to the total error can be quantified, facilitating precise adjustments. An 
important aspect of backpropagation is the incorporation of differentiable non-linear activation 
layers between representation layers [49]. The weight vector 𝑤 is updated in successive training 
steps as per the following equation, where E represents the prediction error and η is a tunable 
hyperparameter of the gradient decent rate: 
 

𝑤& =	𝑤&"' − 𝜂
𝜕𝐸
𝜕𝑤 Equation 2 

 

Several optimization strategies enhance the efficiency of SGD. Weight decay optimization, for 
instance, prevents weights from growing excessively large by adding a scaled L2 norm of the 
weights to the update equation [50]. Momentum-based optimization, on the other hand, aims to 
stabilize SGD by incorporating a momentum variable that considers previous gradients to 
influence current updates [51]. The Adam optimizer, a more recent development by Kingma and 
Ba [52], combines the benefits of AdaGrad and RMSProp, utilizing first and second moment 
variables with distinct decay rates. 
 

Selecting the appropriate non-linear activation function is a critical decision in the model's 
architecture. The sigmoid or logistic function is often favored for its interpretability as a probability 
measure, mapping real numbers to the [0,1] range [48]. The softmax function, useful for multi-
class outputs, is another variant. However, these functions can cause the vanishing gradient 
problem in deep networks due to minimal derivatives at extreme values. The Rectified Linear Unit 
(ReLU) function, which returns the positive part of its input, has been shown to be more effective 
for deep networks compared to sigmoid-type functions [53]. Commonly, DL models use the 
sigmoid or softmax function only in the final layer for probabilistic output, while employing ReLU 
or similar functions in all other layers for enhanced learning efficiency. 

2.4.1 Convolutional Neural Networks (CNNs) 

In Fully Connected Neural Networks (FCNNs), the architecture is such that the weights are 
integrally connected to every position within the input vector or matrix across each layer. This 
configuration processes each input element as a separate, independent dimension. A significant 
limitation of this structure is its inability to independently recognize patterns irrespective of their 
spatial location. To circumvent this issue and facilitate the extraction of high-level features for an 
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FCNN, one effective strategy is the utilization of filters. These filters are applied to the input 
through a convolution process, thereby extracting the requisite information. 

The ability of FCNNs to independently learn new representation spaces is paralleled in 
Convolutional Neural Networks (CNNs), where the learning of filters is automated through the 
backpropagation [49]. This capability has been instrumental in the rapid adoption of CNNs, 
especially for deep learning tasks involving image processing. The widespread acceptance and 
utilization of CNNs in the field were bolstered by the groundbreaking achievements of Krizhevsky 
[54] and Szegedy [55] whose models delivered state-of-the-art results in various image-based 
applications. 
 

 
Figure 2.6- Illustration of a convolutional operation applied to a 6x6 input image using a 3x3 kernel. The operation produces a 
4x4 feature map, effectively capturing spatial hierarchies in the input image. 

2.4.1.1. ResNet 

He et al. [56], introduced the ResNet architecture and the concept of residual blocks, specifically 
designed to train deeper (CNNs) more effectively. This architecture proved to be particularly 
effective in image classification and detection, and its applicability has since expanded to diverse 
areas such as image denoising [57]. A notable contribution of their work was the mitigation of the 
vanishing or exploding gradient problem, a common challenge in training deep neural networks. 
This was achieved through normalized layer initialization and the use of intermediate 
normalization layers like batch normalization. Despite these advancements, He et al. [56] 
identified a degradation issue arising from adding excessive layers to a model, which resulted in 
higher training and test errors for deeper networks. 

To address the degradation problem, they introduced residual learning blocks for computer vision, 
which can be stacked to form a network. Each block consists of two paths: the first path containing 
convolutional layers with ReLU activation, and the second being a shortcut connection that adjusts 
the input size if necessary. ResNet-34 uses two convolutional layers, whereas ResNet-50/101/152 
incorporate a bottleneck layer with a 1x1 kernel to transform the input into the required shape for 
the shortcut connection. The outputs from both paths are combined and processed through a ReLU 
activation layer. The residual architecture enables models to include more layers without an 



Count Enhancement of Scintigraphic Lung Images Siraj-Eddin Ghassel 
 

 

 
17 

excessive increase in parameters, thereby reducing the risk of overfitting. This is particularly 
beneficial as overfitting leads to poor model generalization on data that is not similar to the training 
set. 

2.4.1.2. U-Net 

The U-Net, introduced by Ronneberger et al. in 2015 [58], was designed initially for biomedical 
image segmentation, addressing challenges with sparse yet high-resolution data. The U-shaped 
architecture consists of two parts: a contracting path and an expansive path. 

 

 
Figure 2.7 - Illustration of a U-Net architecture [58] for a 256x256 input image. This model employs successive convolutional 
operations followed by Leaky ReLU activation. Max pooling operations are utilized for spatial downsampling, while upsampling 
layers are paired with linear-activated convolutional layers to refine features. Skip connections link layers with matching spatial 
dimensions, ensuring the integration of features from various depths of the network for effective image segmentation. 

 

Contracting Path:  
In the contracting path of the U-Net architecture, the input image is processed through several 
convolutional layers coupled with ReLU activations. This combination increases the depth of 
feature representation while reducing the spatial dimensions of the image. Max-pooling layers are 
integrated into this pathway, to serve two purposes: firstly, they contribute to the reduction in image 
size, and secondly, they promote spatial invariance. This design enables the network to expand its 
receptive field at each hierarchical level, allowing it to capture and integrate broader contextual 
information from the input image. 

 
Expanding Path: 
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Next, upsampling is performed followed by 2×2 "up-convolutions". Each upsampled map is then 
concatenated with a corresponding feature map from the contracting path, combining detailed and 
contextual information. At the end of this path, a final convolution layer outputs pixel-wise class 
probability.  

2.4.2 Generative Adversarial Networks (GANs) 

In 2014, Goodfellow et al. [59] introduced GANs and paved the way for a new paradigm in 
unsupervised deep learning. At its core, a GAN consists of two neural networks – the generator 
and the discriminator – that are trained concurrently. The generator creates synthetic samples, 
while the discriminator discerns the samples, distinguishing between real samples from the dataset 
and fake samples generated by the generator. Mathematically, GANs are modeled as a min-max 
two-player game, with the objective function being: 

𝑚𝑖𝑛(𝑚𝑎𝑥)𝑉(𝐷, 𝐺) = 𝔼*~,!"#"(*)[𝑙𝑜𝑔𝐷(𝑥)] + 𝔼-~,$(-)Glog	(1 − 𝐷'𝐺(𝑧)*)L 

Here, G seeks to minimize the log probability of the discriminator being correct, while D aims to 
maximize its correct classification. 

 
Figure 2.8- A representation of a GAN. Beginning with random noise input, the generator produces synthetic images. The 
discriminator evaluates these generated images alongside real data, as wither real or fake. The iterative process between the 
generator and discriminator facilitates the production of similar images as training progresses. 
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2.4.2.1. Conditional GANs 

Expanding on the foundational GAN structure, Conditional GANs (cGANs) were proposed by 
Mirza and Osindero in 2014 [60]. In cGANs, both the generator and discriminator are conditioned 
on some auxiliary information, this can be labels or other data. This modification allows for a more 
targeted generation process. For cGANs, the objective function is modified to condition on 
auxiliary information y:	 

𝑚𝑖𝑛(𝑚𝑎𝑥)𝑉(𝐷, 𝐺) = 𝔼*~,!"#"(*)[𝑙𝑜𝑔𝐷(𝑥|𝑦)] + 𝔼-~,$(-)[log	(1 − 𝐷(𝐺(𝑧|𝑦))] 

 
Equation 3 

 

2.4.2.2. Image to Image Translation GANs (Pix2Pix) 

In 2017, Isola et al. [61], developed the Pix2Pix framework, a method for image-to-image 
translation tasks using conditional GANs. The idea is to translate an image from the source domain 
to the target domain. The network employs paired data, where the source and target images are 
aligned at the pixel level. 
Architecturally, Pix2Pix employs a U-Net based generator for mapping input images to output 
images and employs a "PatchGAN" discriminator that classifies patches of images as real or fake. 
This allows the discriminator to focus on localized image structures. 

2.4.2.3. Cycle GANs 

In 2017, Zhu et al. [62], introduced Cycle GANs, a method for unpaired image-to-image 
translation. Unlike Pix2Pix, Cycle GANs don't necessitate aligned paired datasets. This was 
achieved by introducing a cycle consistency loss, ensuring that an image translated from one 
domain to another and then back again remains unchanged. The model is made up of two 
generators and two discriminators. If G translates from domain X to Y and F does the reverse, the 
cycle consistency loss can be formulated as:  

𝕃./.01(𝐺, 𝐹) = 𝔼*~,!"#"(*)[‖𝐹(𝐺(𝑥)) − 𝑥‖1] + 𝔼/~,$(/)GR𝐺'𝐹(𝑦)* − 𝑦R1L 

 
Equation 4 

2.4.3 Loss Functions 

Loss functions, or cost functions, are mathematical formulations that get the difference between 
the predicted output and the actual target in a learning model. Their primary purpose is to provide 
a metric, based on an optimization algorithm to adjust model parameters and guide the training 
process. This section delves into specific loss functions used in deep learning. 

2.4.3.1. Mean Squared Error (MSE) Loss 
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The MSE is a commonly used loss functions, especially in regression problems. It calculates the 
average of the squared differences between predicted and actual values. Mathematically, for a 
dataset with n samples: 

𝑀𝑆𝐸 = 	
1
𝑛U (

2

34'
𝑦3−𝑥3)5 

 

Equation 5 

 

Where yi and xi represent the actual value and predicted value for the ith samples respectively. MSE 
is sensitive to outliers due to the squaring the term, it remains differentiable, making it suitable for 
optimization using gradient descent.  

2.4.3.2. Mean Absolute Error (L1) Loss 

The L1 loss computes the average of the absolute differences between the target and predicated 
values. Mathematically: 

 

𝐿1 = 	
1
𝑛U

‖𝑦3 − 𝑥3‖
2

34'
 

 

Equation 6 

It is less sensitive to outliers compared to MSE and is used when the model should be robust 
against large deviations.  

2.4.3.3.  Perceptual Loss 

Perceptual loss was introduced by Johnson et al. [63], as a concept that considers the approach to 
enhancing the visual fidelity in tasks like style transfer and super-resolution imaging. This method 
diverges from traditional loss functions such as Mean Squared Error (MSE) or L1, which are based 
on pixel-wise differences. Instead, perceptual loss delves into the realm of feature-level 
comparison, to capture more nuanced differences between images. 
Perceptual loss uses pre-trained deep neural networks, such as the VGG network [64]. These 
networks serve as feature extractors that analyze both predicted and target images. The core 
objective is to minimize the differences in the feature representations extracted from these images. 
In this context, the content loss is quantified as the Euclidean distance between these feature 
representations, typically sourced from deeper network layers known for retaining content and 
spatial structure of the images. This approach ensures that the predicted image, while not required 
to be an exact pixel-level replica, is perceptually akin to the target image. 

Furthermore, to address variations in style—encompassing elements like colors, textures, and 
patterns—the style loss is incorporated into the perceptual loss framework [65][66]. This aspect of 
loss is computed using the Gram matrix of both predicted and target images, and the squared 
Frobenius norm of the difference between these matrices represents the style loss. This component 
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of perceptual loss thus penalizes disparities in stylistic elements between the two images, ensuring 
a more comprehensive measure of similarity beyond mere content alignment. 

2.4.3.4. Binary Cross Entropy (BCE) Loss 

BCE loss is commonly used in classification tasks. Given a predicted probability p and a binary 
target y, BCE is defined as: 

 

𝐵𝐶𝐸 = −𝑦𝑙𝑜𝑔(𝑝) − (1 − 𝑦)log	(1 − 𝑝) 
 

Equation 7 

This loss quantifies the divergence between the actual and the predicted probabilities. In essence, 
it penalizes the predicted probabilities that deviate from the actual class labels. Its magnitude grows 
substantially as the predicted probability approaches the wrong label. 

Notably, the binary cross-entropy loss has found significance in the training of GANs. During the 
training process of GANs, the discriminator is often trained using the BCE loss. When the 
discriminator examines a real sample, it should output a value close to one, and for a generated 
sample, a value near zero. The BCE loss ensures that the discriminator's predicted probabilities 
align with these expectations. As the GAN training proceeds, the generator evolves to produce 
samples that increasingly deceive the discriminator, pushing its output probabilities closer to the 
uncertainty boundary of 0.5 for generated samples. 

2.5 Image Quality Assessment  

2.5.1 Structural Similarity Index (SSIM) 

SSIM is a metric used to measure the similarity between two images, often used for assessing the 
quality of image restoration in tasks such as denoising, compression, and super-resolution. As a 
quality indicator, it requires paired reference images to which the test images can be compared. 
Unlike traditional error summation methods like MSE, SSIM is designed to look at changes in 
structural information, luminance, and texture. Wang et al. [67] introduced SSIM, emphasizing its 
effectiveness over traditional means for its closer alignment with human visual perception [68]. 
The SSIM index between two images x and y is defined as: 
 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇*𝜇/ + 𝑐')(2𝜎*/ + 𝑐5)

(𝜇*5 + 𝜇/5 + 𝑐')(𝜎*5 + 𝜎/5 + 𝑐5)
 

 

Equation 8 

Where: 

• 𝜇* and 𝜇/ are the average of x and y respectively. 
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• 𝜇*5 and 𝜇/5  are the variances of x and y respectively. 
• 𝜎*/is the covariances of x and y. 
• 𝑐' and 𝑐5 are scalars to prevent division by zero. These are typically scaled to the dynamic 

range of the pixel values, L, such that c1=0.01L and c2=0.03L,but can vary in 
implementation. 

SSIM provides a score between -1 and 1, where a value of 1 indicates that the test image and 
reference image are identical in terms of structural information.  

2.5.2 Peak Signal-To-Noise Ratio (PSNR) 

PSNR is a widely used metric in the field of image and video processing to quantify the quality of 
reconstructed images [69]. It represents the ratio between the maximum possible power of an 
image (signal) and the background noise in the image. 

𝑃𝑆𝑁𝑅 = 10 ∗ 𝑙𝑜𝑔'6 b
𝑀𝐴𝑋/5

𝑀𝑆𝐸(𝑥, 𝑦)d 

 

Equation 9 

Where: 

• 𝑀𝐴𝑋/5 is the max possible pixel value of the reference image. For example, for a typical 8-
bit image is 255. 

• 𝑀𝑆𝐸(𝑥, 𝑦) between the predicted and reference images. 

The typical value for PSNR in images and video compression is between 30 and 50 dB, where 
higher is better. If the value is over 40 dB it is considered very good and below 20 dB are normally 
unacceptable. 

2.5.3 Task Based Assessment  

In the diagnosis of PE, physicians often rely on standardized interpretation criteria, notably 
PIOPED and EANM (2.3.2). These criteria provide guidance on determining the mismatch size 
for accurately diagnosing or dismissing PE. However, an element of subjectivity persists in the 
diagnostic process. Specifically, physicians make personal judgments about the severity of a 
perfusion defect, its alignment with the pulmonary vascular anatomy, and its size in relation to the 
affected segment [70]. Such subjective estimations can lead to varying diagnostic outcomes. To 
illustrate, within the framework of PIOPED criteria, if one physician estimates the size of multiple 
small mismatches to be less than 25% of the affected segments, a low PE probability might be 
inferred. However, another physician estimating the same mismatches to be larger than 25% could 
interpret it as a high probability for PE [70]. Although many physicians strictly adhere to these 
standardized guidelines, some incorporate their accumulated expertise and experiential insights, 
referred to as the gestalt interpretation, to make their final PE diagnosis [71]. 

To assess the quality of an image on a task-based merit various observer experiments may be 
performed. For example, the agreement between different observers (inter-observer) or between 
repeat interoperations by the same observer (intra-observer) may be assessed. In other cases, the 
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interpretation of an image may be compared to another, established reliable ground truth reference 
such as an objective test, patient outcome, or interpretation of an expert panel. Regardless, 
recruiting human observers is typically expensive, time consuming, produces few data points, and 
fraught with human errors. Quantitative and automated quality assurance measures are, therefore, 
preferable when possible and sufficient.  

2.6 Enhancement and Denoising in Nuclear Medicine: A Review of Related 
Literature  

2.6.1 Classical Filtering Approaches 

Classical filtering approaches for image enhancement and denoising have been used in the field of 
medical imaging [69]. These methods, grounded in spatial or frequency domain operations, aim to 
improve image quality by reducing the noise and augmenting prominent features [72]. Some of 
the most common filtering techniques include mean filtering, median filtering, and Gaussian 
filtering, where the value of a pixel is determined based on a weighted average of its neighbors or 
by filtering in the frequency domain to attenuate unwanted frequencies. Such filters operate under 
the assumption that noise can be effectively differentiated from the image's true underlying 
structures, either spatially or in the frequency domain [73]. 
A prevalent issue is the inadvertent blurring of essential image details during the denoising process 
[74]. This compromise between noise reduction and preserving detail is particularly pronounced 
in methods like mean and Gaussian filtering [75], where the averaging process inherently smooths 
sharp intensity transitions, which could be critical in applications like medical imaging. Another 
limitation lies in the assumption of uniform noise characteristics throughout the image [76]. Many 
traditional filters have fixed structures and parameters, making them potentially not fit to handle 
non-uniform, adaptive, or complex noise distributions present in real-world images. 

Further complicating matters is the challenge of preserving edges. Edges, which represent abrupt 
intensity changes, are fundamental features in images [77]. Yet, many classical filtering 
approaches, in their bid to reduce noise, often end up blurring or distorting these edges. Techniques 
like the bilateral filter were introduced to address this by preserving edges while denoising, but 
they too can sometimes fail, especially in images with intricate texture or in scenarios where noise 
and image details have similar frequencies [78]. As imaging technology has advanced and the need 
for high-quality, denoised images has grown, it has become evident that while classical filtering 
methods provide an initial first step, they may not always be the optimal choice for every image 
enhancement and denoising application [79]. As such, we’ve turned to deep learning as an 
alternative to enhance scintigraphic images [48].  

 

2.6.2 Image Enhancement in PET Imaging 

In the field of medical imaging, Positron Emission Tomography (PET) plays a vital role in 
detecting, diagnosing, and treating various diseases, including cancer, heart disease, and 
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neurological disorders [80]. However, traditional PET imaging faces limitations such as noise and 
low resolution, primarily due to the need to minimize patient exposure to radiation.  

CNNs and transformers have been utilized to improve the quality of PET images and enhance 
diagnostic accuracy [81][82]. They effectively enhance the resolution, reduce noise, and 
reconstruct low-dose images into full-dose equivalents, bridging the gap between low-dose and 
full-dose images.  

Xu et al. conducted a study employing a U-Net model with residual learning to reconstruct full-
dose images from a single low-dose image [83]. Similarly, Xiang et al. developed a deep auto-
context CNN model that synthesized full-dose images from low-dose images, demonstrating 
comparable image quality with significantly improved speed compared to conventional methods 
[84]. 
Another approach to enhance PET images involves combining PET with other imaging modalities, 
such as Magnetic Resonance (MR) imaging. By incorporating high-resolution anatomical 
information from MR imaging, models can generate more accurate and robust images. Liu et al. 
applied three modified U-Net architectures to enhance PET noise using concurrent MR images 
without the need for full-dose PET images, resulting in a higher signal-to-noise ratio [85]. 

Recent advancements have also explored the application of GANs for image-to-image 
transformation tasks in PET imaging [86]. Zhao et al. utilized a 3D cGAN to denoise low-dose 
brain PET images [87], while Lei et al. employed Cycle-GAN for noise reduction and predicting 
whole-body full-dose 18F-FDG PET images from low-dose ones [88]. 

 

2.6.3 Image Enhancement in SPECT Imaging 

SPECT imaging faces challenges related to the low signal-to-noise ratio, long acquisition times, 
and suboptimal resolution [89]. Deep learning techniques, have emerged as effective solutions to 
overcome these hurdles and enhance the quality of SPECT imaging [90]. 
One application of deep learning in SPECT involves reducing the acquisition time, which is 
especially crucial in pediatric studies due to children's limited compliance during lengthy scans. 
Lin et al. conducted a study using a 3D U-Net model to estimate full-time SPECT acquisitions 
from half-time acquisitions in pediatric renal SPECT scans [91]. The model successfully 
synthesized SPECT images with high accuracy (91.7%), sensitivity (83.3%), and specificity 
(100%), demonstrating its potential to reduce acquisition time while maintaining image quality. 
The U-Net architecture has been used to reduce SPECT imaging acquisition time. By generating 
synthetic intermediate projections (SIPs) from fewer actual projections, this method effectively 
reduces the total number of required projections without sacrificing image quality [92]. It was 
trained on every fourth out of 120 acquired SPECT projections, the model synthesized 30 SIPs per 
case, thereby reducing the original acquisition from 120 to 30 projections, supplemented by 90 
deep learning-generated SIPs. The generated SIPs achieved a mean SSIM value of 0.926, and for 
attenuation-corrected ordered-subset expectation maximization (AC-OSEM), the reconstruction 
with synthesized projections resulted in higher SSIM (0.993 vs. 0.989) and PSNR (49.5 vs. 47.2) 
values compared to using 30 projections. 
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Pan et al. developed a deep learning-based method, specifically a lesion-attention weighted U2-
Net model, to enhance the quality of SPECT bone scan images [93]. The model was trained with 
SPECT images and corresponding 1/7 scan time SPECT images. Quantitative evaluation 
demonstrated synthesized images with PSNR of 40.8 and SSIM of 0.788 compared to baseline 1/7 
SPECT of 37.7 and 0.765 for PSNR and SSIM respectively.  
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Chapter 3: State of Artificial Intelligence in Nuclear Medicine 
I am a co-author on the following article: 

Jabbarpour A, Ghassel S, Lang J, Klein R, Moulton E. “The Past, Present, and Future Role 
of Artificial Intelligence in Ventilation/Perfusion Scintigraphy: A Systematic 
Review.” Seminars in Nuclear Medicine, vol. 53, no. 6, 2023, pp. 752–65, 
https://doi.org/10.1053/j.semnuclmed.2023.03.002. [94] 

The article is a systematic literature review that traces the journey of artificial intelligence in the 
context of V/Q scintigraphy. Through a systematic exploration of various AI methodologies, the 
paper identifies significant opportunities for innovation and development in the realm of V/Q 
scintigraphy. The content was slightly modified from the manuscript to fit within the context of 
this thesis. 

3.1 Background 

V/Q scans, tracing back to the 1960s, [95][96] are used for diagnosing PE. V/Q studies have been 
instrumental in both acute and chronic settings, helping to diagnose new instances of PE and track 
the progression of the disease over time. The early 1990s saw a standardization in the interpretation 
of acute PE on V/Q scintigraphy, and this period also marked the onset of applying AI algorithms 
for automating acute PE diagnosis [97]. Interestingly, some early AI models even outperformed 
experienced radiologists in diagnosing PE [98], [99]. 

However, the advent of CTPA saw a shift in the diagnostic approach for PE, leading to a decline 
in the use of AI for V/Q scintigraphy. By the mid-2000s, CTPA was already outpacing V/Q 
scintigraphy. Presently, V/Q scintigraphy makes up only 2%-11% of imaging studies for PE 
diagnosis, [100], [101]. 

The dynamics of V/Q scintigraphy usage, coupled with advances in medical image processing, 
have impacted the potential of AI in lung scintigraphy and its clinical value. Therefore, it is crucial 
to understand the past, present, and potential future of research in lung scintigraphy and AI. In this 
context, we undertook a systematic review to not only assess the use of AI in V/Q scintigraphy for 
PE detection but to explore all potential applications, with the goal of identifying key focus areas 
and gaps that could shape future research and development initiatives. 

3.2 Methods 

This review was conducted according to the Preferred Reporting Items for Systematic 
Reviews and Meta-analyses (PRISMA) guidelines [102]. 

3.2.1 Search Strategy  

We conducted a literature search on the Ovid MEDLINE database, covering the period from 
January 1, 1946, to August 5, 2022. Their focus was on studies that employed artificial intelligence 
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models, including machine learning and deep learning, within the context of ventilation and 
perfusion imaging. Search terms included "artificial intelligence", "machine learning", "deep 
learning", and "ventilation / perfusion". 
Criteria for inclusion in the review were that the articles had to be written in English, had to be 
peer-reviewed, and had to be original publications or full conference proceedings in manuscript 
format. We excluded any articles not relevant to computer vision, without AI techniques, non-
original works, or were merely abstracts and poster presentations. They also excluded any studies 
that used V/Q images for subsequent analyses after applying AI to other types of images. 

Alongside the database search, we also manually searched for articles to ensure no relevant studies 
were overlooked. They eliminated any duplicate findings. We independently reviewed the titles 
and abstracts of the articles to determine if they met the criteria. 
 

 
Figure 3.1- (A) A schematic representation of our search strategy including the time window, keywords, screening criteria, and the 
final application category. (B) PRISMA flow diagram of systematic literature review process corresponding to headers in (A). a: 
Medical Subject Headings (MeSH) and all Subheadings as used in Medline/PubMed. b: word of phrase appearing in titles and 
abstracts. c: keyword supplied by the author. d: MeSH topical qualifier for Diagnostic Imaging. *: wildcard for all words beginning 
with given characters. /: specific MeSH Subject heading. 

3.2.2 Data Extraction 

Using a standardized data extraction form, we separately extracted the necessary information from 
each study. The data gathered included, among other things, the year of publication, imaging 
techniques used, the stage of the disease being studied (acute or chronic), acquisition protocols, 
ventilation and perfusion agents, and the size of the study population for training, validation, and 
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testing. We also noted the outcome label, incidence rate if applicable, model tasks, input features, 
validation methods, algorithms used, the source of ground truth for output labels, and performance 
metrics of the most effective model reported. 

3.2.3 Statistics  

Descriptive statistics are reported as the median and the interquartile range (IQR) for continuous 
values or as a ratio and percentage for categorical data. Differences in proportions with the two-
proportion z-test. 

3.3 Results 

3.3.1 Study Selection and Grouping 

The search process, along with the PRISMA flow diagrams, are represented in Figure 3.1. The 
initial database search resulted in 343 articles, which reduced to 342 after one duplicate was 
eliminated. After screening the titles and abstracts, 299 articles were discarded. Following a 
comprehensive text review, 26 papers met the eligibility criteria. Five additional articles from the 
manual search were included in the analysis.  

Hence, a total of 31 publications fulfilled the inclusion criteria. These studies were then categorized 
into two distinct groups: (1) disease diagnosis/detection (22 papers, constituting 71% of the total), 
and (2) generating V/Q images from non-scintigraphic data (9 papers, or 29% of the total). A 
summarized version of the studies in each category can be viewed in Figure 3.1 and Figure 3.2. 
Publications focusing on AI for disease diagnosis/detection were published from 1993 to 2021, 
with a majority occurring between the mid-90s and early-2000s (the median year of publication 
being 2001, with an interquartile range of 1996-2003). In contrast, all the studies centering on 
generating V/Q images were published within a narrow period from 2019 to 2022. A visual display 
of the breakdown of publications per year and application category can be seen in Figure 3.2. 
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Figure 3.2- Breakdown of publications by year and application category. White – Disease Diagnosis/Detection. Black – V/Q Image 
Generation. 

3.3.2 AI for Disease Diagnosis/Detection 

The study found PE was the primary disease of interest in most of the research papers, accounting 
for 95% of the total, with only a single paper studying the diagnosis of pulmonary arterial 
hypertension. No papers were identified that pertained to other indications of V/Q scintigraphy, 
such as assessments of pulmonary function before surgery, COPD, or CTEPH. Most of the studies 
(82%) utilized both ventilation and perfusion images, with a minority (18%) using only perfusion 
images. 
In terms of the radiotracers used, all the studies that disclosed this information used 99mTc-MAA 
as a perfusion agent. However, the ventilation agents varied, with 55% using 133Xe, 20% using 
99mTc-DTPA, and 20% not using ventilation images at all. The study noted that 133Xe was more 
commonly used in earlier studies. 
Planar imaging was the preferred technique used in 95% of all the papers, with only a single study 
using SPECT for perfusion images. None of the studies used ventilation SPECT as a model input. 
In the context of disease stages, the studies were either purely acute (50%) or a mix of acute and 
chronic (23%) stages, with some (27%) not reporting such information. 
When looking at the model types, shallow artificial neural networks (ANNs) such as multi-layer 
perceptrons were the most studied (91%) and were used significantly more than other machine 
learning models. Feature extraction was performed manually in 41% of the studies and 
automatically in the remaining 59%. 

Ground truth labeling for training and testing sets was determined with invasive pulmonary 
angiography in 48% of the papers, consensus of physicians in 19%, a single physician in 5%, not 
mentioned in 5%, and a mix of physician consensus for training and PA for testing in 24%. 
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Interestingly, most of the AI research in V/Q scintigraphy for disease diagnosis and detection was 
led by three independent groups from Massachusetts General Hospital, Duke University Medical 
Center, and Lund University, contributing to 32%, 18%, and 18% of the research papers, 
respectively. 

3.3.3 AI for Generating V/Q Images 

All the studies identified in this literature review aimed to generate synthetic V/Q images from CT 
scans. The goal was to protect functional areas of the lung during radiation therapy. As such, the 
classification of the patients into acute or chronic disease stages was not relevant in these studies.  

This emerging research field within the intersection of medical imaging and artificial intelligence 
started with a solitary study in 2019 and rapidly expanded to include eight additional studies in the 
ensuing years. Notably, none of the studies attempted to convert V/Q images into CT scans or any 
other imaging modality.  

In terms of the type of images generated, there was an almost even split between studies generating 
ventilation images (44%) and those generating perfusion images (56%). When creating perfusion 
images, all studies used 99mTc-MAA SPECT as the ground truth modality. On the other hand, for 
ventilation images, 75% used 99mTc-labelled carbon particles SPECT, and 25% used Gallium-68 
PET. None of the studies aimed to generate ventilation or perfusion planar images. 
Most studies used Dynamic CT (4DCT) to generate ventilation SPECT images (75%), while static 
CT was primarily used for perfusion SPECT images (80%). All these studies employed CNNs, 
with the U-Net architecture inspiring 78% of them. One study (11%) used a cGAN, and another 
one (11%) employed a generic fully CNN. 

3.4 Discussion 

3.4.1 Early Research on AI in V/Q Scintigraphy for PE: Ahead of Its Time and a Missed 
Opportunity 

The period from the mid-1990s to the early 2000s saw a surge in scientific studies exploring the 
use of AI in detecting acute PE using V/Q scintigraphy. V/Q scintigraphy was among the first 
applications in medical imaging to be investigated with AI. A bibliometric study shows that until 
1993, AI-related research in medicine was rather rare, constituting only 0.64% of all literature 
published between 1977 and 2018. 

During this period, AI models were trained using manually extracted clinical and imaging features 
related to PIOPED criteria, such as size and morphology of V/Q mismatches. These models mainly 
used Pulmonary Angiography (PA) as a ground truth label for training AI models. However, as 
technology advanced, research transitioned from manual to automated feature extraction from both 
ventilation and perfusion images.  
By the early 2010s, when technology had evolved to effectively utilize CNNs for computer vision, 
CTPA had already surpassed V/Q scintigraphy for detecting acute PE. Consequently, the research 
focus shifted towards CTPA. 
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The early to mid-2010s witnessed the rise of CNNs and deep learning, opening a new chapter in 
medical image processing for workflow acceleration and computer-aided diagnosis (CAD). 
However, with CTPA overshadowing V/Q scintigraphy, the research on automatic PE detection or 
diagnosis with CNNs was primarily focused on CTPA. The number of studies on CTPA for image-
level classification and object detection for PE has grown significantly in the past three years, 
allowing for dedicated meta-analyses, systematic reviews, and public datasets. In contrast, the 
research on applying state-of-the-art AI techniques, like CNNs, to V/Q scintigraphy remains 
limited. 

The shift in ground truth labeling for PE is also noteworthy. PA, an invasive procedure, was 
considered the gold standard of PE diagnosis and was frequently performed in the early 90s to 
validate diagnosis on V/Q scintigraphy. Several studies have shown that ANNs can diagnose PE 
as effectively as, or even better than, experienced physicians. However, as non-invasive imaging 
for diagnosis of acute PE became more established, the use of PA declined and is rarely performed 
today. Consequently, only physician interpretations are now available for training AI models for 
PE diagnosis. 
This transition has significant implications for AI's role in PE diagnosis. For instance, given the 
lack of invasive PA, new AI models will require innovative approaches to surpass expert 
radiologists or nuclear medicine physicians. Moreover, combining data from several sources will 
require careful harmonization of imaging interpretations. 
V/Q SPECT, a newer technology, has been severely understudied in the context of AI for PE 
diagnosis. V/Q SPECT only began to replace planar acquisitions in the 2000s and never received 
the same attention as the pioneering planar studies in the early 90s. Our review only identified a 
single recent study of AI for SPECT, which showed promising results, indicating that CNNs can 
likely perform well at PE diagnosis and detection. 

3.4.2 Current Trends in AI for V/Q Scintigraphy: Image Translation to V/Q Images 

This review revealed a surprising fact: despite the growing use of AI in diagnosing and detecting 
a range of medical conditions, there is a noticeable lack of current research focused on using V/Q 
scintigraphy for detecting PE. It seems that the research landscape has evolved, with a new focus 
on creating synthetic V/Q images from static 3D or dynamic 4D CT scans. This shift is mainly 
aimed at preventing damage to functional lung tissue during radiotherapy, akin to SPECT-guided 
radiotherapy treatment planning. 
In a fascinating twist, instead of using V/Q scans as input for PE detection, as was the case in the 
past, these scans are now being used to train and validate the output of image generation models. 
This shift in research focus began in 2019, with encouraging results both in terms of generating 
the synthetic image and manually segmenting functional lung regions based on the synthetic 
image. This cutting-edge work has been spearheaded by two research groups: one based at the 
Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, and 
the other at The Hong Kong Polytechnic University.  

However, it's worth noting that to date, this research hasn't transitioned into clinical applications. 
Furthermore, it appears that no one has attempted to use these synthetic V/Q images for disease 
detection, such as acute PE detection, which traditionally has been the primary use of V/Q 
scintigraphy. 
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3.4.3 Future Opportunities in AI for V/Q Scintigraphy 

Just as crucial as the existing literature this review has brought to light are the identified gaps 
within it. The application of AI in nuclear imaging covers a broad spectrum of areas such as 
instrumentation and image acquisition, image reconstruction and low-dose/fast scanning, 
quantitative imaging, cross-modality image-to-image translation, image registration, internal 
dosimetry, and image interpretation, which includes computer-aided detection, diagnosis, or 
prognosis. What follows are some potential directions for integrating these innovations into V/Q 
scintigraphy. These suggestions could serve to rekindle the forward momentum that V/Q 
scintigraphy experienced around the dawn of the new millennium. 

3.4.4 Workflow 

AI has been utilized to enhance image quality in several ways, such as removing noise and artifacts, 
correcting motion, and reducing dosage. Generally, there are four proposed methods within the 
image generation pipeline: (1) improving raw or sinogram data, (2) image reconstruction, (3) 
enhancing the reconstructed image, and (4) employing a combination of analytical reconstruction 
and AI models, a method known as hybrid image reconstruction. 
Low-dose and fast scan approaches are two aspects of the same concept. As the activity level or 
acquisition time decreases, there's an unavoidable increase in Poisson noise, which subsequently 
affects image quality, the ability to detect lesions, and the quantitative accuracy of nuclear 
medicine imaging. Reducing the activity of the administered radiopharmaceutical is desirable due 
to its associated radiation risk. Additionally, shortening the acquisition time improves clinical 
throughput, decreases patient discomfort, reduces the likelihood of patient movement, thereby 
increasing profitability and enhancing image quality. Numerous attempts have been made to 
suppress noise in nuclear medicine images, from post-reconstruction processing/filtering 
algorithms and anatomically guided reconstruction algorithms to deep learning-based denoising 
and statistical modeling during iterative reconstruction. Recently, deep learning enhancements in 
PET imaging have significantly outpaced those in SPECT, with a few exceptions in image 
reconstruction, count enhancement, and fast scanning. However, no AI count enhancement study 
was found for planar scintigraphy, despite several non-AI attempts. 

Deep learning has previously delivered promising results for artifact removal in various medical 
imaging modalities like CT and PET. In the case of ventilation scintigraphy that uses aerosols, hot 
spots resulting from central deposition in large airways are particularly noteworthy. While 
traditional image processing algorithms like image intensity thresholding and erosion techniques 
have been used to address this issue, these methods often require manual intervention and are 
unreliable for widespread automation. AI stands as a prime candidate for automatically eliminating 
these artifacts to improve diagnostic quality. 
Even though SPECT has several benefits, some centers, especially in the United States, prefer to 
capture planar images due to the ease of visualizing the lung through the traditional 6 or 8 views. 
To encourage clinics to transition to the more sensitive SPECT while maintaining familiar planar 
imaging, pseudo-planar images from tomographic reconstructions offer a promising solution. 
However, the blurry appearance of these images has been criticized, and some researchers question 
their ability to diagnose PE as effectively as true planar images. Deep learning solutions might be 
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the answer where analytical approaches have fallen short, enabling the benefits of pseudo-planars 
without compromising diagnostic or imaging quality. This could be achieved either through count 
enhancement of SPECT projection data or by generating planars from the reconstructed SPECT. 

3.4.5 Anatomical Information 

Historical research, dating back to the year 2000, has demonstrated that AI struggled most with 
cases that involved abnormal Chest X-Ray (CXR) or sub-segmental PE within the test set. These 
challenging cases are also a reflection of the inherent limitations of V/Q scintigraphy as 
encountered in clinical practice. For instance, it's been documented that V/Q planar has a low 
sensitivity for identifying perfusion defects in medial segments. Furthermore, other medical 
conditions like pneumonia, pleural or pericardial effusions, cardiovascular disease, pneumothorax, 
or malignancies can lead to V/Q mismatches, resulting in false positives. If the data from CXR is 
not included as input for ANNs, abnormal CXR cases can mistakenly be interpreted by ANNs as 
PE. Research by Bailey and his team has already established the value of SPECT/CT images where 
functional data is combined with anatomical structures. This not only improves the diagnostic 
accuracy of V/Q scintigraphy for PE, but also helps clinicians with differential diagnoses as 
mentioned earlier. Therefore, there's scope for future CNNs to incorporate CXR or CT data along 
with V/Q scintigraphy to enhance prediction accuracy. 
 

3.4.6 Other Pathologies 

Apart from their conventional applications, like surgical planning, V/Q scans have been recently 
showing promise in identifying new indications in other diseases, such as CTEPH and COPD. 
These are conditions where AI could potentially play a significant role. For instance, CTEPH, often 
resulting from residual PE, leads to an increase in pulmonary arterial pressure over time, which 
ultimately results in right ventricle failure and high mortality rates. A recent study showed that 
applying PIOPED criteria with a threshold of 2.5 segmental mismatched perfusion defects for 
diagnosing CTEPH resulted in a sensitivity of 100% and a specificity of 94.7%. This suggests that 
AI, already employed in detecting segmental and subsegmental mismatches on V/Q scintigraphy, 
can be repurposed with ease to diagnose CTEPH. 

COPD, another lung disease with growing prevalence, is associated with sustained respiratory 
airflow limitation, often due to exposure to harmful aerosols that lead to obstructed airways. 
Moreover, patients suspected of PE tend to be more susceptible to COPD. One common method 
for assessing COPD severity is the Global Initiative for Chronic Obstructive Lung Disease 
(GOLD) criteria, which is based on the forced expiratory volume in 1 second and forced vital 
capacity measured using a spirometer. Depending on the severity of the airflow limitation, COPD 
is categorized into four GOLD stages. Higher stages of COPD result in more severe inhomogeneity 
of ventilation, which can be visually identified on V/Q scintigraphy. In fact, one recent study found 
a strong correlation between the penetration grade of ventilation agents and total preserved lung 
function as measured with V SPECT to GOLD stages. Luckily, CNNs are proficient at texture 
analysis and can therefore extract features related to the heterogeneity, penetration grade of 
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ventilation agents, or lung function found in V/Q images and ultimately link them to the severity 
of COPD. 

 

3.4.7 Challenges and Limitations 

In the process of developing and testing AI, it's essential to have definitive and objective assertions 
about the AI algorithms to confirm their effectiveness in medical scenarios. The Society of Nuclear 
Medicine and Molecular Imaging has recently proposed best practices through the RELIANCE 
(Recommendations for EvaLuation of AI for NuClear medicinE) guideline to boost faith in the 
usage of AI in clinical contexts. A proper claim should specify the clinical task, the patient 
demographics, the imaging process in use, techniques to gather specific information related to the 
task, and the performance metrics of the algorithm on the given clinical task. 
For instance, a count-enhancement algorithm's primary aim during training would be to reduce the 
mean square error between the model's predictions and the reference images. However, the most 
crucial aspect is ensuring that the model's predictions do not modify the diagnosis or patient 
treatment based on the original full-dose or full-length acquisition. This could occur, for example, 
by introducing false positives or by eliminating perfusion defects linked to PE. Sticking to these 
evaluation best practices, such as carrying out further clinical evaluation studies, will assist in 
determining if these algorithms are suitable for clinical application, give healthcare professionals 
the confidence to use them, and ultimately raise the standard of care. 
It's critical for AI developers to be aware of the need to back up clinically relevant claims, as these 
challenges may at times surpass the complexity of developing the AI itself. A possible criticism of 
this work could be that we might have overlooked important contributions in this field. To tackle 
this concern, we carried out a systematic review of a leading database in the domain of medical 
imaging, Ovid MEDLINE. Nonetheless, we recognize that there is no absolute assurance. 

3.5 Conclusion  

Some of the initial efforts in applying AI to medical imaging were centered around lung 
scintigraphy, and these efforts were quite promising in terms of potential clinical applications. 
However, this area was largely overlooked later, possibly because of the concurrent emergence 
and dominance of CTPA as an alternative technique. Given the advancements in AI technologies, 
the continued use of scintigraphy for diagnosing PE in certain patient groups, and the discovery of 
new applications such as CTEPH and COPD, there are compelling reasons to revisit and reignite 
research into the use of AI in lung V/Q scintigraphy. 
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Chapter 4: Resizing of Scintigraphic Images 
I am the first author of the article: 

Ghassel S, Jabbarpour A, Lang J, Moulton E, Klein R. “The effect of resizing on the natural 
appearance of scintigraphic images: an image similarity analysis,” Phys Med Biol, 2023. 
(In Review) 

The article informs about the proper methodology of resizing scintigraphic images so as to 
preserve image noise properties. The content was slightly modified from the manuscript to fit 
within the context of this thesis. 

4.1 Introduction 

Image resizing is a common image processing operation for resampling an image from one grid 
size to another [103]. When the image is upsampled (the pixel density increases), a choice of 
interpolation methods may be applied, the most common of which are nearest neighbor, bilinear, 
bicubic, and b-spline. When the image is downsampled (the pixel density decreases), standard 
procedure recommends applying a low pass filter to prevent aliasing [69]. While each interpolation 
method tries to maximize the similarity of the destination to the source image [104], they differ in 
how the pixel values in the neighborhood of the source coordinate are combined to calculate the 
final value at the destination coordinate. 
In almost all imaging modalities, the process of resizing may not substantially alter the semantic 
nature of the image [105]. However, in the case of nuclear medicine scintigraphy, where the native 
image unit is the number of detected events (i.e., photon counts) [106], Poisson counting statistics 
play a visually perceivable and mathematically significant role in the image noise [107]. As 
dictated by Poisson counting statistics, the variance in the signal is equal to the mean (expected 
true counts) of the sample; hence, the relative noise decreases as one over the square root of the 
mean counts as shown in Equation 10. 
 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑛𝑜𝑖𝑠𝑒 = 	
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝑚𝑒𝑎𝑛 = √𝜇
𝜇 =

1
√𝜇

 Equation 10 

 

Total photon counts, and thus photon density, need to be conserved if downstream operations are 
dependent on accurate photon counts or noise modeling. Since resizing intrinsically modifies the 
number of pixels and pixel spacing [108], the resulting resized image should reflect the splitting 
or joining of counts from the original image in the target image when upsampling or 
downsampling, respectively. Accurate accounting of counts models what the image would have 
looked like had the image been acquired at the desired spatial grid and corresponding pixel spacing, 
including the magnitude of the noise in each pixel [109]. 
On one hand, naïve interpolation during upsampling naturally gives rise to a larger sum of counts 
– due to an increased number of pixels – approximately by a factor of the upsampling ratio. It is 
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therefore essential to reduce the excess photon counts while maintaining the natural Poisson noise 
of scintigraphic images. In fact, White and Lawson [110] have demonstrated that Poisson 
resampling is the appropriate technique for artificially reducing counts in scintigraphic images. 
While this technique was originally intended to generate synthetic low-count scintigraphic images 
from high-count ones, this method can be reasonably repurposed to correct for the added collateral 
counts introduced during upsampling. 

Downsampling, on the other hand, is analogous to acquiring an image on a smaller spatial grid 
with a larger pixel size. Properly implemented, this operation effectively corresponds to the 
summation of photon counts within a sliding window whose size is given by the downsampling 
ratio. This method will necessarily conserve count statistics and Poisson noise of the resulting 
image mimicking how a gamma camera would have aggregated photon counts within a larger pixel 
size. In more concrete terms, if we use the example of a 256×256 image to be resized to 128×128, 
the resulting image should be the same as if the image had been natively acquired on a 128×128 
imaging grid (within the acceptable limits of random noise associated with two independent image 
samples). Each resulting pixel is thus expected to have 4 times more counts (the sum of 4 pixels 
sampling the same corresponding image space) on average than the original image pixel. Examples 
of upsampling and downsampling effects are demonstrated in Figure 4.1 with simple examples. 
By performing simple linear interpolation, the total number of counts in the image are increased 
or decreased respectively by a factor of number of pixels (or their density). This can be corrected 
by factoring the pixel counts to generate count-preserved images. In the case of upsampling, the 
image appears smoothed, without local noise pattern. The noise and count-preserved images, apply 
Poisson resampling of each pixel count to reproduce the statistical noise for each pixel. 
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Figure 4.1- Example of (A) upsampling and (B) downsampling operations on nuclear scintigraphy images (original) with linear 
interpolation, showing the resulting images and incorrect total events. “Count-preserved images” obtained with a global scaling 
correction are contrasted with an ideal “Noise and Count-Preserved images” as if it had been acquired by an imaging system with 
the target pixel sizes and local noise associated with the increased or decreased counts per pixel. Numbers represent pixel intensity 
as event counts in the corresponding pixel and rounded to the nearest integer. 

Joint count and noise preservation are paramount for many image processing investigations in 
nuclear medicine [10][11]. Currently, considering the immense work in AI model development in 
medical imaging [113][114], AI developers may circumvent the high variability in image sizes in 
real-life clinical settings by forcing a model’s input images to a fixed spatial grid under the 
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assumption that these resized images reflect natively acquired ones on the destination spatial grid. 
This does not pose a problem for modalities such as MR or CT, where the content of the image 
does not change after resizing; however, such is not the case in nuclear medicine where trivial 
resizing operations introduce false pixel count and/or noise representations in images. 

Given the above, we aimed to compare traditional resizing with naïve linear interpolation [103] 
against upsampling with Poisson resampling corrections or downsampling with sliding window 
summations. In particular, we sought to evaluate the effect of each of these resizing techniques on 
the similarity of the resulting images to real images acquired at the target spatial grid using real 
phantom data. Through this study, we seek to demonstrate inaccuracies resulting from naively 
applying traditional image resizing methods in nuclear scintigraphy and to establish a robust 
standard for scintigraphic image resizing for future research and developments.  

4.2 Methods 

4.2.1 Establishing reference similarity curves as a function of count level 

In order to evaluate and compare resizing strategies, we postulated the following: (1) a successfully 
resized image of an object should exhibit the same content and noise characteristics as if the image 
had been acquired on the target spatial resolution, and (2) two images of a given object acquired 
with the same imaging protocol (i.e., at the same spatial resolution) will both have some intrinsic 
noise and therefore be similar up to a certain point; in other words, the images are not identical. 
Therefore, it follows that the similarity between a resized image of an object and another image of 
the same object at the target resolution should be equal to that between two independently acquired 
images of the object at the target resolution (Figure 4.2). 
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Figure 4.2- Postulate behind successful resizing of scintigraphic images. The similarity between the resized image and either image 
A or image B at the target resolution is approximately the same as the similarity between images A and B. If this is the case, then 
the image has successfully been resized. SSIM = Structural Similarity Index. 

It is worth noting that no one image acquired at the target spatial resolution may serve as an 
absolute reference truth, as each image has some degree of inherent noise. Hence, our analysis 
rests upon measures of similarity between pairs of images throughout this work. To this end, we 
sought to derive curves establishing reference measures of similarity achievable between two 
independent, natively acquired images of the phantom for various count levels and spatial 
resolutions. Against these reference curves we could then compare similarity curves between 
resized images and those acquired at the target spatial resolution. Consequently, the best resizing 
method would yield curves that most closely overlaps the reference curves. 

Time frames from the dynamic image series were randomly split and the images were summed to 
generate statistically independent images ranging from 11 to 550 kcnts (Figure 4.3). Various 
similarity metrics between the “full count” (550 kcnts) image and the reduced count (11-550 kcnts) 
images were calculated for: (1) two images acquired at the same spatial resolution, and (2) a resized 
image at a target spatial resolution and another natively acquired image at the same resolution. By 
summing combinations of randomly selected dynamic frames, we generated 1000 independent 
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permutations of images with similar number of counts and thus could bootstrap the reference 
similarity metrics to generate averages and confidence intervals. Reference similarity curves were 
generated as a function of count level between two images acquired at the same spatial resolution. 
To evaluate the proposed method with the highest achievable similarity of the target image, we 
calculated the structured similarity index (SSIM) [67] and the logarithm of the mean squared error 
(MSE). Prior to computing similarity metrics between pairs of images, each image was normalized 
to the maximum intensity pixel so as to (1) be more sensitive to the statistics of the image (i.e., 
contrast, noise, texture, etc.) instead of the actual count values of the image and (2) be able to 
compare results between spatial resolutions [115]. 

4.2.2 Establishing reference similarity curves with synthetic low-count images 

We also derived a second reference curve by first generating pairs of independent scintigraphic 
images with the highest possible count value given our dynamic acquisition (here, 550kcnts) and 
then synthesizing low-count versions of them with Poisson resampling (Figure 4.3). While it has 
already been demonstrated that Poisson resampling effectively yields low-count versions of high-
count images that preserve the natural noise characteristics of single photon emission scintigraphy 
[110], we decided to verify that two low-count Poisson resampled images would also be as similar 
to each other as two native low-count images. By demonstrating this, we can provide confidence 
that Poisson resampling is indeed a reliable technique to simulate low-count images when dynamic 
acquisitions are not available – which is the case in most clinical settings – and that they can be 
combined with appropriately resized images from other spatial resolutions.  
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Figure 4.3- A simulated full dynamic acquisition conducted on a 256x256 grid size to create real and synthetic low-count images. 

4.2.3 Upsampling Method 

Next, we compared the similarity of upsampled images with and without Poisson resampling 
corrections with the images of matched count level natively acquired on the target spatial 
resolution (Figure 4.4). First, we reconstructed an image at a given count level at the lower spatial 
resolution by randomly selecting and summing the appropriate number of frames from the dynamic 
sequence. Second, we resized the image at the lower spatial resolution using linear interpolation 
to attain the higher target spatial resolution. The resized image was then rescaled by a factor 



Count Enhancement of Scintigraphic Lung Images Siraj-Eddin Ghassel 
 

 

 
42 

corresponding to the increased pixel density (e.g., for 64×64 to 256×256 upsampling the rescaling 
factor was (64/256)2 = 1/16) so as to preserve the total number of counts in both images. Third, we 
applied a per pixel Poisson resampling correction to the resized image to simulate the counting 
statistical noise that would have been present at the per pixel target count level. Briefly speaking, 
a Poisson resampling correction comprises of resampling all pixels of the image using a binomial 
distribution where the initial pixel value constitutes the number of trials and the probability of 
success in our case is given the rescaling factor. The method is detailed in [110]. Fourth, for each 
upsampled image, we computed the image similarity metrics between it and another randomly 
reconstructed image natively acquired at the target spatial resolution. This process was repeated 
1000 times with the dynamic acquisition images of the lower spatial grid to bootstrap confidence 
intervals of the image similarity curves as a function of count level. 
 

 

 
Figure 4.4- Upsampling method. Example workflow resizing from a 64×64 to a 256×256 grid size using 2D phantom planar 
dynamic acquisition. The similarity metrics of both methods are compared against pre-determined reference similarity curves at 
the target (256×256) resolution. 
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4.2.4 Downsampling Method 

Similar to the upsampling experiment, we compared the similarity of downsampled images with 
either linear interpolation or a sliding window summation method with images of the matched 
count level natively acquired on the target spatial resolution (Figure 4.5). We started by producing 
an image of a given count level by randomly selecting and summing the appropriate number of 
frames of the dynamic acquisition. The first method was to downsample the images by the 
appropriate factor with linear interpolation to the lower spatial grid. The second method was a 
sliding window summation which consisted of applying a 2×2 or a 4×4 non-overlapping sliding 
window across the higher resolution image and computing the sum of counts therein. The image 
similarity metrics were calculated between each downsampled image and another randomly 
reconstructed native image at the target spatial resolution method. This process was also repeated 
with 1000 bootstrap samples to generate mean and confidence intervals as a function of count 
level.  
 



Count Enhancement of Scintigraphic Lung Images Siraj-Eddin Ghassel 
 

 

 
44 

 
Figure 4.5- Downsampling method: Example workflow resizing from a 256×256 to a 64×64 grid size using 2D phantom planar 
dynamic acquisition. The similarity metrics of both methods are compared against pre-determined reference similarity curves at 
the target (64×64) resolution. 

4.3 Experiments 

4.3.1 Phantom 

This study used real planar scintigraphic images acquired using a physical phantom and was 
performed by Ran Klein and myself. The acquisition protocol was designed to emulate a 
pulmonary ventilation-perfusion (V/Q) scintigraphy exam using a specially designed Data 
Spectrum Anthropomorphic Torso Phantom with custom dimensions 45×33 cm that simulates 
anatomical structures and physiological parameters relevant to nuclear lung scans [116]. The 
phantom included partial (superiorly truncated) lung cavities which were filled with Styrofoam 
beads to emulate the low density of air-filled lung tissue. 779 MBq of Technetium-99m (99mTc)-
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pertechnetate were diluted into a batch of approximately 500 mL of tap water, which was then used 
to fill the space between the Styrofoam beads in the lung cavities. All remaining phantom cavities 
(thorax and liver) were filled with tap water to emulate soft-tissue attenuation. 

 
Figure 4.6- Imaging of the Data Spectrum Anthropomorphic Torso Phantom inside the Siemens Intevo Bold SPECT/CT. The 
phantom, tailored with dimensions of 45×33 cm, represents larger patient sizes and anatomical structures pertinent to nuclear lung 
scans. 

 

4.3.2 Image Acquisition 

Phantom images were acquired with a zoom factor of 1.45 at different spatial grids of 256×256, 
128×128, and 64×64 with pixel spacings of 1.64 mm2, 3.29 mm2, and 6.59 mm2, respectively. To 
easily generate planar images at various count levels, we performed dynamic acquisitions 
comprised of 100 frames of 1 second duration each, resulting in about 11 kcnts/image for a total 
of 1.1 Mcnts over the whole dynamic acquisition. Dead time was <3% to minimize the impact of 
count pile up. Each of the aforementioned acquisitions was performed for the typical six views of 
a V/Q scan: anterior (ANT), posterior (POST), left anterior oblique (LAO), right posterior oblique 
(RPO), left posterior oblique (LPO), and right anterior oblique (RAO). All acquisitions were 
performed in quick succession (within 1 hour) to minimize radioactive decay between image sets. 
Data for the study were acquired with a dual head Siemens Intevo Bold SPECT/CT using low 
energy high resolution collimators. The energy window was set to 140 keV ± 7.5%, corresponding 
to the photon peak energy of 99mTc. 
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4.4 Results 

4.4.1 Visual Inspection of Upsampled and Downsampled Images 

Figure 4.7 illustrates the effect of the each upsampling and downsampling methods on image 
similarity with respect to real and synthetic scintigraphic images. As can be seen, upsampling with 
naïve linear interpolation maintains the original increased contrast of high-to-low count areas of 
the lower resolution image, which is less pronounced on the higher resolution image. The 
application of a Poisson resampling correction visually seems to restore the natural contrast of the 
image and re-introduce the typical Poisson noise of the real and synthetic images of the target 
higher resolution grid. 
Downsampling with either linear or a sliding window summation seems to yield images with 
similar contrast of high-to-low count areas. However, the noise of downsampled with the sliding 
window appears more similar to both real and synthetic images of the target lower resolution grid. 
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Figure 4.7- An illustrative example of the effect of the various upsampling (A) and downsampling (B) methods on image similarity 
with respect to real and synthetic scintigraphic images at approx.. 105 kcnts. (A) From left to right: a Real (256×256) reference 
image reconstructed from the dynamic acquisition, a Synthetic image obtained from Poisson resampling of another 550 kcnts image 
at the target spatial resolution (256×256), and a Real (64×64) 550 kcnts image that was upsampled with linear interpolation and 
Poisson resampling correction, and the same Real (64×64) image upsampled with only linear interpolation. (B) From left to right: 
a Real (64×64) 550 kcnts reference image reconstructed from the dynamic acquisition, a Synthetic image obtained from Poisson 
resampling of another 550 kcnts image at the target spatial resolution (256×256), a Real (256×256) 550 kcnts image downsampled 
with sliding window summation, and the same Real (256×256) downsampled with only linear interpolation. All images were 
rendered in grayscale, with their intensity levels scaled according to their respective minimum and maximum values.  
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4.4.2 Agreement Between Similarity Curves for Real and Synthetic Images 

The reference curves for all similarity metrics from real and synthetic images overlapped nearly 
perfectly across all projections, count levels, and spatial resolutions, confirming that the 
synthesized (count reduced) images accurately modeled the actual count reduced images (Figure 
4.8). A general finding also was that image similarity increased (i.e., higher SSIM and lower MSE) 
as the spatial resolution of the scintigraphic images decreased. 

 

 
Figure 4.8- Evaluating similarity metrics SSIM and Log MSE using a dynamic phantom acquisition on six common 2D planar 
projections: ANT, anterior, LAO, left anterior oblique, LPO, left posterior oblique, POST, posterior, RAO, right anterior oblique, 
and RPO, right posterior oblique on spatial grids of 64, 128, and 256 pixels. Real curves were generated by summing pairs of 
scintigraphic images up to highest possible count value of 550 kcnts. Synthetic curves were created by synthesizing low-count 
versions of 550 kcnts using Poisson resampling correction.  

4.4.3 Effect of Resizing Methods on Image Similarity 

Upsampling with naïve linear interpolation yielded image similarity curves that deviated 
significantly from the reference curves for real and synthetic data regardless of the source or target 
spatial grid, count level, and projection, as shown in (Figure 4.9). In particular, when compared 
with scintigraphic images natively acquired on the target spatial grid, upsampled images with naïve 
linear interpolation produced higher SSIM and higher MSE than the reference curves for real and 
synthetic data. The deviations were more marked (i.e., less overlap of the confidence intervals) 
when upsampling from either 64×64 or 128×128 to the highest grid of 256×256, whereas there 
was more overlap of the similarity curves when upsampling from 64×64 to 128×128 (Figure 4.9, 
Figure 4.11, Figure 4.12), However, following the Poisson resampling correction, the similarity 
curves realigned with the reference curves both with respect to the mean and confidence intervals 
for each target spatial grid, count level, and projection.  

 
With regards to downsampling, the most striking result was that when resizing by a factor of 2 
(i.e., from 256×256 to 128×128 or from 128×128 to 64×64), linear interpolation and sliding 
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window summation methods yielded similar similarity curves, both of which overlaid nearly 
perfectly on the reference curves (Figure 4.13, Figure 4.14). However, when downsampling from 
256×256 to 64×64, naïve linear interpolation yielded similarity curves that significantly deviated 
from the reference curves (Figure 4.10). In this case, when compared with scintigraphic images 
natively acquired on the target spatial grid (64×64), downsampled images with naïve linear 
interpolation resulted in lower values for SSIM as well as higher MSE with respect to the reference 
curves for real and synthetic data. Sliding window summation, on the other hand, produced a high 
level of agreement with real and synthetic data reference curves.  

 

 
Figure 4.9- Image similarity metrics for 64×64 images upsampled to 256×256 with reference curves from the real data. 

 
Figure 4.10- Image similarity metrics for 256×256 images downsampled to 64×64 with reference curve from the real data. 
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Figure 4.11- Image similarity metrics for 128×128 images upsampled to 256×256 with reference curve from the real data. 

 

 
Figure 4.12-  Image similarity metrics for 64×64 images upsampled to 128×128 with reference curve from the real data. 

 
Figure 4.13- Image similarity metrics for 256×256 images downsampled to 128×128 with reference curve from the real data. 
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Figure 4.14- Image similarity metrics for 128×128 images downsampled to 64×64 with reference curve from the real data. 

4.5 Discussion 

In this study, we investigated methods of image resizing in the context of nuclear medical imaging 
in which the native image units represent counts of detected events and are governed by Poisson 
statistics [107]. This exploration is important to preserving the underlying noise and statistical 
properties of scintigraphic images [110], particularly when they are the focal point of analysis. By 
examining upsampling and downsampling techniques used for resizing and their impact on 
preserving image noise properties, our goal was to guide the research and development community 
on proper methodology. While potentially applicable to many image processing applications, we 
believe these lessons are particularly applicable to nuclear medical imaging where image pre-
processing frequently includes image resizing.  

4.5.1 Upsampling 

In the case of image upsampling, we demonstrated that naïve application of linear interpolation 
violates inherent noise characteristics of scintigraphic images. Specifically, as images undergo 
greater degrees of upsampling (i.e., transitioning from a 64×64 to a 256×256 (Figure 4.9) grid as 
opposed to 128×128 to 256×256 (Figure 4.11)), the difference in similarity becomes more evident. 
These results can be partly explained by the mechanism by which linear interpolation operates 
[104]. To the first order, linear interpolation by a factor of 2 averages pixel intensities in a small 
vicinity, close to a neighborhood of 2×2 pixels. However, as the scaling factor increases (64×64 to 
a 256×256) (Figure 4.9), linear interpolation no longer includes in its average those pixels that are 
further than the immediate vicinity from the center of the interpolated pixel.  
 

Furthermore, it is evident that solely relying on interpolation does not provide an accurate 
representation of the target resolution image, especially in relation to its noise characteristics. 
Hence, the recommended method for image upsampling is as follows: first, resize the image with 
linear Interpolation to the new sampling grid; second, apply a Poisson resampling correction by 
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resampling the linearly interpolated image, rounded to the nearest integer, with a binomial 
distribution where the interpolated integer pixel value constitutes the number of trials and the 
probability of success in our case is given the by the ratio between the old and new pixel spacing. 
 

Perhaps surprisingly, interpolation-based upsampling resulted in higher SSIM values (with target 
images) than comparing two images acquired at the target sampling grid (Figure 4.9, Figure 4.11, 
Figure 4.12). This may be explained by the interpolation being performed from larger pixels, with 
more counts and less relative noise being reused to derive many small pixels in the upsampled 
image. Consequently, the local variance component of the SSIM equation in the upsampled image 
is reduced (as confirmed in Figure 4.7A, bottom-right) leading to inflated SSIM measures. 
However, counterintuitively, in this scenario a higher SSIM does not correspond to a more realistic 
upsampled image, simply because it deviates too much from the SSIM between two images 
acquired at the target resolution, which goes against our postulate of a successful resizing.  
 

4.5.2 Downsampling 

For downsampling images, we explored two techniques: linear interpolation [104] and sliding 
window summation [117]. Both methods yielded similar similarity metrics (and in agreement with 
reference values) when downsampling by a factor of 2 (i.e., from 256×256 to 128×128 (Figure 
4.13) or from 128×128 to 64×64 (Figure 4.14)). However, when downsampling images by a larger 
factor (i.e., from 256×256 to 64×64 (Figure 4.10)) linear interpolation deviated from the reference 
similarity trends. The observed outcomes can be attributed, in part, to the principles governing 
linear interpolation when downsampling by a factor of 2. In this scenario, the position of the pixels 
in the downsampled image will fall perfectly in the center of a 2x2 window in the original image, 
resulting in the average of all four values in the window. By introducing a global scale correction 
to the linearly interpolated downsampled image, we recover the result of using a 2x2 sliding 
window summation. But with an increasing scaling factor (as demonstrated in Figure 4.1, 
downsampling), linear interpolation begins to exclude pixels that aren't in the immediate proximity 
of the center of the interpolated pixel. In contrast, sliding window summation accounts for all 
pixels in the window for all sizes. Furthermore, since summing original image pixel values mimics 
how a gamma camera would have aggregated photon counts within a larger pixel size, the resulting 
image necessarily has preserved total image counts and the correct noise characteristics. Hence, 
the recommended procedure for downsampling nuclear scintigraphic images is to apply sliding 
window summation rather than resampling with interpolation. 

4.5.3 Implications on Nuclear Image Processing 

One domain where resizing of nuclear medicine images can have a profound impact is in AI 
development. Indeed, there has been a strong emphasis on leveraging precise and representative 
data for AI model training and evaluation. The pitfalls of relying on inadequately simulated or non-
representative data have been underscored in current literature [118]. When machine learning 
models are trained on datasets that do not encompass the complexities of real-world scenarios, 
there is an inherent risk of these models yielding untrustworthy or inaccurate results [119][120]. 
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This disjunction between training data and real-world samples can severely impede a model's 
proficiency in image interpretation, directly influencing clinical decisions and patient outcomes. 
Moreover, models fed with improperly resized scintigraphic images that are non-representative 
may demonstrate excellent performance during validation phases using similar datasets, 
showcasing high accuracy and precision. However, their performance might be compromised in 
real-world applications where similar resizing is not applied [121].  

 
Image resizing can also play an important role in multimodal co-registration where a source image 
is often resampled to the target image’s reference frame and thus pixel/voxel size. Therefore, in 
cases where planar scintigraphy images are the source image, care should be taken to adjust the 
counts in the resulting image to account for the change in pixel/voxel spacing. This could be 
relevant, for instance, in registering scintigraphy bone scan data onto x-ray images for anatomical 
localization of metabolic abnormalities to harmonize inter-patient observations [122]. This is 
especially crucial if photon count statistics (mean, max, standard deviation, etc.) were to be 
manually extracted from these registered images and used as features in a downstream machine 
learning or radiomics task [99][123] .  

 

4.5.4 Limitations 

Despite our unequivocal results on the proper methods for resizing nuclear medicine images, our 
study is not without its limitations. First, we investigated convenient resizing factors of 2 and 4 on 
the most commonly used sampling grids in nuclear medicine scintigraphic applications (i.e., 
256×256, 128×128 and 64×64). Therefore, we are not able to provide informed recommendations 
on resizing beyond factors of 4 or by non-integer factors. While upsampling by non-integer factors 
can still be accomplished with the recommended Poisson resampling correction, the correct 
procedure for downsampling by non-integer factors was not demonstrated in our study. Second, 
our study utilized phantom images to simulate a lung perfusion scan; however, because our 
methodology was grounded in fundamental principles of Poisson counting statistics and 
scintigraphy image acquisition, this should carry over to any real-world clinical applications in 
nuclear medicine scintigraphy. Third, other interpolation techniques exist, but for the scope of this 
study, we focused primarily on linear interpolation due to its prevalent use in the field. Fourth, we 
did not directly assess the potential effects of resizing on 3D SPECT reconstructions, as there are 
many post-processing steps in reconstructing tomographic volumes from sinograms (such as 
spatial smoothing), that may invalidate our assumptions and methodology. In the case of PET 
imaging, since voxel units are Bq/mL, which is a measure of activity density, they do not directly 
encode event count, further complicating estimation of voxel of count statistics. Finally, we did 
not investigate how to adapt our recommendations to non-linear registrations where local parts of 
the image are shrunk and expanded independently. While in theory one could locally apply Poisson 
resampling corrections in enlarged areas or sum counts in contracted areas, this technical 
development was outside the scope of this study yet merits further attention.  
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4.6 Conclusion  

Image resizing is a common process in medical imaging that many neglect to reflect on its finer 
nuances. We make the case that in the context of nuclear image scintigraphy, one must take care 
to adopt methods that preserve total image counts and maintain realistic image noise properties. 
This is crucial during the preprocessing step of neural network training where images are 
harmonized to a common grid size. We provide a recipe for simple upsampling and downsampling 
of scintigraphic images to enable the scientific community to properly perform image rescaling 
operations in practice. 
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Chapter 5: Count Enhancement of Scintigraphic Images  
Scintigraphic image quality is directly related to the number of photons captured by the camera 
which is dependent on the following factors: camera efficiency, amount of radioactivity in the field 
of view, and image acquisition time. Increasing any of these factors will result in increased count 
statistics and hence reduced image noise. However, any such increase comes at a cost. Increasing 
camera sensitivity requires more imaging hardware, or collimators that favour sensitivity over 
spatial resolution. Increasing radioactivity is at the peril of patient exposure to ionizing radiation 
and cost. Finally, increasing image acquisition time is at the expense of patient comfort, risk of 
patient motion, and reduced clinical throughput. In this chapter we explore the prospect of 
increasing the effective sensitivity of the imaging system by post-processing the scintigraphic 
images to enhance their quality. 

Traditional image processing approaches to reduce image noise utilized low-pass filters, at the 
expense of image spatial resolution and signal to background contrast. While more advanced 
approaches have been proposed, very few have achieved clinical utility, with “Pixon” image 
enhancement being perhaps the rare exception [124]. Pixon achieves a minor improvement in 
image enhancement equivalent to ~20% boost in effective sensitivity improvement, by subjective 
visual assessment at the TOH clinic. 

Recently, the use of machine-learning image enhancement technologies has been proposed in the 
domains of PET with practical applications entering clinical routine [125]. Relatively little similar 
efforts have been committed to planar scintigraphy. Thus, in this chapter we explore the prospect 
of ML-based image count enhancement in scintigraphic images and speculate on its utility to 
shorten image acquisition times and to generate pseudo-planar images.  

5.1 Methods 

We designed an image enhancement algorithm that converts simulated low count planar 
scintigraphic images to diagnostic quality planar scintigraphic images (Generator in Figure 5.1). 
A low count image is akin to a low dose image since it is acquired for a shorter period. Inputs to 
the generator were simulated low count images that were generated from diagnostic quality images 
with 10% of the counts using Poisson resampling as described in [110].The corresponding, original 
diagnostic planar image was treated as a gold standard image. The Generator output represents a 
predicted full count image, which for training and validation was compared against the ground-
truth images. 
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Figure 5.1- Proposed architecture of count enhancement algorithm that simulates low count scintigraphic images from full count 
perfusion planar with 10% counts using Poisson resampling. Images are enhanced (B) using a pix2pix architecture with a U-Net 
generator. The difference between predicted and target images were minimized by the following loss functions: Discriminator 
(GAN), L1, and Percetpual.  

5.1.1 Data Collection 

For this study we used clinical images to construct an anonymized image database (approved by 
the Ottawa Health Science Network Research Ethics Board protocol #20220303). We included all 
lung V/Q studies performed at The Ottawa Hospital between June 2017 and January 2023 who 
underwent both perfusion planar and SPECT image acquisitions. Only the planar perfusion images 
were used in this study. Image acquisition consisted of 600k counts per image using a ±7.5% 
photopeak window centered at 140 keV on a 256×256 sampling grid. Consequently, image 
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acquisition times varied from ~60 seconds to as much at 5 minutes. Our data extraction yielded 
data from 704 patients with perfusion planar scans totalling 3900 images in up to 6 projection 
angles (anterior, posterior, right anterior oblique, left anterior oblique, right posterior oblique and 
left posterior oblique). Few studies only had anterior and posterior projections. 

5.1.2 Data Preparation 

All images were standardized in terms of subject position and image intensity. The center of mass 
of the image was determined and a corresponding image shift was performed to center the image 
signal (lungs) in the image space. Image intensity was normalized to [0,1] based on the pixel of 
maximum intensity. This standardization was performed to enhance model training performance 
[126][127].  

The dataset was split into train (80%), validation (10%) and test (10%) using the Scikit-Learn 
library [128]. The projections of every patient were kept in the same split to prevent data leakage 
between splits. To optimize the training process, the data was batched in sets of 32 and shuffled; 
the buffer size was equated to the total data length. Additionally, data was prefetched to ensure 
efficient GPU utilization. 
Corresponding low-count images were generated for each planar projection by simulating a 10% 
count image (i.e., a 90% count loss) using the method in [110] which was confirmed and detailed 
in Chapter 4:Resizing of Scintigraphic Images. I verified that these low-count simulated images 
maintained their structural integrity and no new defects were added or removed. This resulted in 
image pairs consisting of the original full count planar image (target) and the low-count simulation 
which are the candidates for image enhancement (input). Since the target full count planar images 
are acquired on a 256×256 grid at TOH, the input was also simulated on a 256×256 grid.  

5.1.3 Model Implementation 

The core architecture leverages the image-to-image translation model known as pix2pix, as 
detailed in section 2.4.2.2. The implementation closely aligns with the procedural framework 
outlined in the TensorFlow tutorial [107]. The pix2pix model employs two types of loss functions 
for training: generative adversarial loss (LGAN) and L1 loss. In this work, we wanted to see the 
effect of applying different loss functions on the generated image when using scintigraphic images 
as input.  
The first loss function was the L1 loss, a traditional approach in image processing. This loss 
function measures the absolute difference between predicted and target images, helping to 
maintain a similar global structure. L1 loss has demonstrated effectiveness in various medical 
imaging modalities [129][93][130], enhancing the structural integrity of predicted images. 
To complement L1 loss, a GAN was added, which is increasingly popular in medical image 
translation tasks [131][132] and image enhancement tasks [93][133][129]. Following Isola et al.'s 
method [61], adversarial training was applied to transfer low-count images to corresponding full-
count targets, enhancing the realism of predicted features. The inclusion of L1 loss alongside 
adversarial training is critical, as adversarial loss alone cannot guarantee structural similarity with 
target full-count images. 
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Incorporating perceptual loss was another strategy to elevate image quality, to ensure perceptual 
resemblance to target full-count images. However, traditional pre-trained models like VGG [64], 
which are trained on ImageNet [134], fall short in capturing medically relevant features. To address 
this, a pre-trained ResNet50 model was utilized [56], trained on the RadImageNet database [135], 
comprised of 1.4 million medically relevant images. For content (Lcontent) and style (Lstyle) losses, 
we extracted layers conv5_block2_1_conv, and ‘conv2_block3_3_conv’, 
‘conv3_block4_3_conv’, conv4_block6_3_conv’, ‘conv5_block3_3_conv’ respectively. These 
specific layers were chosen for their role as bottlenecks in the ResNet50 model, based on findings 
in [136]. 
The integration of perceptual loss within the GAN architecture (2.4.2) is another approach that has 
shown promise in improving the quality of predicted images in PET [129] and MRI [133][137]. 
Therefore, we combined with L1, GAN, and perceptual losses to optimize the image generation 
process. 
The discriminator found in GANs often learns faster than the generator [138]. To mitigate this, a 
dual-phase training approach was adopted. For each training iteration of the discriminator, the 
generator was trained twice. This strategy was designed to maintain a balanced learning process, 
preventing either component from overpowering the other. 
We explored four combinations of loss functions: 

1- L1 
𝐿&7&80 =	𝐿9' 
 

2- L1 + Perceptual  
𝐿&7&80 =	𝐿9' + 𝐿.72&12& + 𝐿:&/01 	 
 

3- L1+ GAN  
𝐿&7&80 =	𝜆0𝐿9' + 𝐿(;<((,))	where 𝜆0 = 100 
 

4- L1 + Perceptual + GAN 
𝐿&7&80 =	𝜆0𝐿9' + 𝜆.𝐿.72&12& + 𝜆:𝐿:&/01 + 𝐿(;<((,))	where 𝜆0 = 𝜆. = 𝜆: = 100 

 

It was crucial to ensure that images conformed to the input specifications of ResNet50 [56]. The 
native input shape for ResNet50 is (256,256,3), catering to RGB images. However, scintigraphic 
images are grayscale with a single channel. The single channel was copied and concatenated three 
times along the channel axis. Images were again normalized between [0,1]. For optimization, the 
Adam optimizer was utilized with a learning rate of 2.0×10-4 and a beta value of 5.0×10-1 for both 
the generator and discriminator.  

5.1.4 Model Training 

Training was conducted on NVIDIA GeForce RTX 3090 Ti, averaging 2.5 hours per loss function 
combination. During training, the impact of different loss functions on image generation was 
closely monitored. The objective was to evaluate how each loss function combination influenced 
the quality of generated images. Ten images were randomly selected from the validation set for 
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each of the four loss functions. While each model was trained for 300 epochs, the final model was 
arbitrary chosen based on visual assessment of generated images in the validation set – these are 
referred to as “selected epoch”. 

5.1.5 Statistical Analysis 

A statistical analysis was done to assess the quality of images generated using different loss 
function configurations. This analysis involved evaluating the images with established similarity 
metrics: SSIM, PSNR, and MSE. 
For the statistical examination of the impact of varied loss configurations on image quality, a one-
way repeated measures ANOVA (rmANOVA) was performed. This statistical method is apt for 
comparing the mean differences across groups where identical subjects or datasets have paired 
measurements in different conditions. This method determined whether changes in loss functions 
significantly influenced image quality as gauged by SSIM, PSNR, and MSE. 

In this analysis, the within-subject factor were the different loss functions, each being applied to 
the same set of patient images. The dependent variables under scrutiny were the similarity metrics: 
SSIM, PSNR, and MSE. This examines if any notable variance existed in these metrics across the 
different loss function methods. The patient IDs variable served to label the repeated measurements 
belonging to the same patients and controlling for variability within each patient. 
For the rmANOVA, the null hypothesis proposed that there is no significant difference in image 
quality metrics arising from training a model with the various loss functions. A significant result 
from the ANOVA test would suggest that at least one loss function yields statistically significant 
image quality metrics from the others. In the case of a significant rmANOVA, post-hoc pairwise 
comparisons t-tests were conducted to identify which losses resulted in significantly different 
image quality metrics. Descriptive statistics were also produced as the mean and standard deviation 
of differences between loss function pairs. P-values were corrected using the using 
Benjamini/Hochberg false discovery rate (FDR) correction [139]. This was only done during the 
post-hoc pairwise comparison with a significant cut-off set at p<0.05 after correction.  

5.1.6 Clinical Evaluation 

A clinical evaluation was done to assess the practical utility of the images predicted using different 
loss functions. This assessment was done to determine the real-world applicability of our AI-
generated images in a clinical setting.  
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Figure 5.2- Clinical survey using L1+Perc+GAN loss function for the AI enhanced images agaisnt diagnostically relavent full count 
perfusion planars (ground truth). 

For an in-depth evaluation, I chose the best loss function based on the criteria below for a survey 
focusing on a side-by-side comparison of full count planars (ground truth) images against their 
predicted counterparts. All projections available for a patient were included as demonstrated in 
Figure 5.2. Out of 71 selected studies, 65 had all 6 projections and 6 only had the anterior and 
posterior projections. The survey participants were asked to rate the AI enhanced images against 
the corresponding ground truth based on the following: 

1- Low: This score could indicate a low similarity between the predicted and target images. 
Characteristics might include significant noise, distortion, or loss of critical diagnostic 
features. The image is deemed to have poor diagnostic value. 

2-Moderate: This score represents moderate similarity. While there may be some noise or 
minor distortions, essential diagnostic features are visible. The image is of acceptable 
diagnostic quality but may lack clarity or detail compared to the target image. 

3-High: This score signifies high similarity to the target image. The predicted image 
accurately replicates the target, with minimal noise and no loss of essential diagnostic 
features. It is of high diagnostic quality, closely resembling the original. 

Survey participants consisted of experienced researchers, senior medical students, and medical 
residents versed in V/Q scans. The readers were split into two groups: experienced and novice 
readers. The experienced group consisted of the two researchers and one certified nuclear medicine 
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physician well versed in reading V/Q scans and the novice group consisted of 8 people who are 
proficient at reading V/Q scans. 

5.2 Results 

5.2.1 Visual Analysis 

 
Figure 5.3- Qualitative results comparing the target to 4 different loss function combinations. These include L1, L1+Perc 
(perceptual), L1+GAN, and L1+Perc+GAN. This was done for all planar projections: anterior (ANT), posterior (POST), left poster 
oblique (LPO), right posterior oblique (RPO), left anterior oblique (LAO), and right anterior oblique (RAO). 

5.2.1.1. L1 loss 

Figure 5.3 reveals that the L1 looks similar to the ground truth, with no additional perfusion defects 
and preserved “salt and pepper” effect. However, discrepancies in brightness are observed in 
certain areas (arrows). Based on Table 5.1 and Figure 5.4, the model has overfit based on the 
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train/val ratio since the loss function validation curve is higher than the training curve and the 
corresponding curves diverge with increased training epochs.  

 
Figure 5.4- L1 as the loss function for training and validation curves in a pix2pix model. 

5.2.1.2. L1+Perc loss 

As demonstrated in Figure 5.3, a visually perceptible “checkerboard” pattern was observed in the 
lungs of L1+Perc without introducing new perfusion defects. The training (blue) and validation 
(red) curves of the image similarity metrics (Figure 5.5, Table 5.2) align closely, suggesting 
effective learning and low overfitting. A marked improvement in similarity metrics is observed 
around epochs 30 to 60, with a stabilization phase from epoch 60 to 200, followed by another boost 
in similarity in epochs 200 to 250, with a final plateau. This trend is particularly noticeable in 
PSNR and SSIM, but also in MSE. Analysis of content and style losses (Figure 5.6, Table 5.1) 
shows a pronounced disparity in magnitudes, despite equal weighting. The content loss overfit to 
the training set, however the style loss did not. When combined with the L1 loss (Figure 5.7), the 
perceptual loss also overfit to the training set.  

 
Figure 5.5- Image similarity metrics MSE, PSNR, and SSIM for training and validation curves with L1 and perceptual losses in a 
pix2pix model. 
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Figure 5.6- From left to right, content, style, and both combined for training and validation curves in a pix2pix model. 

 
Figure 5.7- From left to right, L1, perceptual and both are combined for training and validation curves in a pix2pix model. 

5.2.1.3. L1+GAN loss 

L1+GAN in Figure 5.3 did not introduce any visible artifacts. Examining the image similarity 
metrics (Figure 5.8, Table 5.2), the training curves remain stable, whereas validation curves exhibit 
large fluctuations between epochs, with SSIM showing fewer spikes after epoch 100. Figure 5.9 
indicates a stable L1 training curve with sporadic validation spikes. GAN training, expectedly, 
shows instability in both generator and discriminator curves (Figure 5.9), a characteristic of GAN 
training dynamics. 

 
Figure 5.8- Image similarity metrics MSE, PSNR, and SSIM for training and validation curves with L1 and GAN losses in a pix2pix 
model. 
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Figure 5.9- Combined L1 and GAN for training and validation curves in a pix2pix model. 

5.2.1.4. L1+Perc+GAN loss 

Visual assessment of Figure 5.3 suggests that images generated using this loss combination best 
agreed with the ground truth, with no additional defects or noise artifacts. Image similarity metrics 
(Figure 5.10, Table 5.2) indicate a consistent improvement during initial epochs, followed by 
stabilization and gradual improvement. The content, style and perceptual (content + style) loss 
(Figure 5.11) all demonstrate the model overfit. There are notable spikes in magnitude across the 
epochs. Figure 5.12 reveals overlapping L1 training and validation curves, whereas perceptual loss 
and GAN training exhibit periodic fluctuations, with validation curves generally higher than their 
training counterparts. 

 
Figure 5.10- Image similarity metrics MSE, PSNR, and SSIM for training and validation curves with L1, perceptual and GAN losses 
in a pix2pix model. 
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Figure 5.11- From left to right, style, content, and both combined for training and validation curves in a pix2pix model. 

 
Figure 5.12- Combined L1, perceptual, and GAN for training and validation curves in a pix2pix model. 

5.2.2 Quantitative Analysis 

 

Loss Functions  Selected 
Epoch  

Train Loss Val Loss Train/Val 
Ratio 

L1 L1 285 8.57x10-3 1.49x10-2 0.575 

L1+Perc Content 

300 

6.61x100 1.18x102 0.056 

Style 1.87x10-1 2.98x100 0.628 

Perc (Content + Style) 6.98x100 1.21x102 0.058 

L1 1.56x10-2 1.72x10-2 0.907 

L1+Perc 8.36x100 1.23x102 0.068 

L1+GAN Generator 
175 

9.74x10-1 1.04x100 0.937 

Discriminator 1.25x100 1.49x100 0.839 
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L1 1.67x10-2 1.89x10-2 0.884 

L1+GAN 2.65x100 2.88x100 0.920 

L1+Perc+GAN Content 

300 

1.41x101 1.06x102 0.133 

Style 4.48x10-1 2.55x100 0.176 

Perc (Content + Style) 1.46x101 1.08x102 0.135 

Generator 3.91x100 2.86x100 1.37 

Discriminator 3.01x10-1 1.78x100 0.169 

L1 1.64x10-2 1.73x10-2 0.948 

L1+Perc+GAN 2.01x101 1.13x102 0.178 

Table 5.1- Training (train) and validation (val) losses for arbitrarily selected epoch based on visual assessment of ten images 
validation figures. 

 SSIM PSNR MSE 

Loss Functions Train Val Train Val Train Val 

L1 8.88x10-1 8.06x10-1 3.50x101 2.99x101 3.28x10-4 1.11x10-3 

L1+Perc 7.73x10-1 7.63x10-1 3.02x101 2.94x101 1.01x10-3 1.27x10-3 

L1+GAN 7.91x10-1 7.91x10-1 3.00x101 2.92x101 1.07x10-3 1.33x10-3 

L1+Perc+GAN 7.90x10-1 7.84x10-1 2.96x101 2.91x101 1.14x10-3 1.34x10-3 
Table 5.2- Image similarity metrics for different loss functions at selected epoch (same as in Table 5.1). 

 

 
Figure 5.13- Boxplot comparing different loss functions (at selected epoch) and the input using image similarity metrics: (structural 
similarity index (SSIM), peak signal to noise ratio (PSNR) and mean squared error (MSE). Data was from the test set. N=402 
images. 

A boxplot analysis is shown in Figure 5.13 for the different loss combinations for each image 
similarity metrics (SSIM, PSNR, and MSE) on the test set. L1 performed the best in all three 
metrics with the other methods having similar results. 
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5.2.2.1. ANOVA 

ANOVA indicated significant performance change with the model using all three performance 
metrics (p<10-5). A detailed pair-wise analysis for SSIM is shown in Table 5.3, again indicating 
that L1 loss outperformed all other loss functions (p<10-5). The same pattern followed for the 
remaining metrics but are not shown for brevity. 

A B P-Value Delta Standard deviation 

L1 L1+GAN 1.72x10-65 4.28x10-2 5.26x10-3 

L1 L1+Perc 1.00x10-74 4.39x10-2 3.93x10-3 

L1 L1+Perc+GAN 1.72x10-46 2.48x10-2 5.85x10-3 

L1+GAN L1+Perc 2.73x10-03 1.11x10-3 3.03x10-3 

L1+GAN L1+Perc+GAN 5.07x10-43 1.80x10-2 4.83x10-3 

L1+Perc L1+Perc+GAN 6.69x10-55 1.91x10-2 3.38x10-3 
Table 5.3- ANOVA Post-hoc analysis for SSIM across different loss types. 
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Figure 5.14- Pairwise comparison of SSIM between models as part of ANOVA post-hoc analysis (t-test) corresponding to Table 5.3 
and Figure 5.13 (left). Images from individual patients are represented by a single line of a given color. 

The p-value for SSIM was statistically significant (p<10-5). Post hoc analysis, as detailed in Table 
5.3 and illustrated in Figure 5.14, further support these findings, highlighting the superiority of L1 
over other loss functions. Similar patterns were observed in PSNR and MSE and were not included 
for brevity. 

5.2.2.2. Clinical  

While L1 performed best in the quantitative analysis, by visual assessment, L1+Perc+GAN loss 
function was chosen as the best to conduct the survey. Table 5.4 illustrates the average results in 
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each category for novice and experienced readers. For 71 patients in the test set (402 images), 
experienced and novice readers rated the predicted vs target images as low at a similar rate (4% 
for both). For the remaining scores, experienced viewers rated a smaller proportion as having high 
similarity to the ground truth (55% vs 67%), likely reflecting an attention to small details that 
comes with experience. The high similarity signifies high diagnostic quality similar to that of the 
ground truth.  

 

 Low Moderate High Total 

Novice (n=8) 2.5 (4%) 21 (30%) 47.5 (67%) 71 

Experienced 
(n=3) 

3 (4%) 29.3 (41%) 38.7 (55%) 71 

Combined (n=11) 2.64 (4%) 23.3 (33%) 45.1 (64%) 71 

Table 5.4- Visual scoring for clinical quality by comparing predicted vs ground truth images by novice and experienced readers. 
Average number of responses across readers (% of total responses). 

5.3 Discussion 

In this work we implemented and tested four machine learning models for enhancing low count 
scintigraphic images of the lungs. We tested enhancement at a 10:1 count ratio, which in practice 
simulate a 10:1 shortening of the image acquisition time or 10:1 dose reduction. By successfully 
implementing and testing these models, our study aimed to demonstrate that deep learning can 
effectively generate high-quality images from low-count ones.  
The simulated reduction in counts suggests a theoretical ability to reduce acquisition time or dose 
as a step towards greater patient comfort and safety without significant loss to diagnostic accuracy. 
Furthermore, it could be a cost-effective imaging procedure in clinical settings due to improved 
patient throughput. Another potential application is to produce pseudo-planar projections from raw 
tomographic sinograms. Typical tomographic projections in lung V/Q scans are on the order of 5 
to 20 seconds, thus a 10:1 count enhancement should produce image quality of 50 to 200 second 
acquisitions – on the same order as typical planar projections. 
It is perhaps interesting to note that the raw data had 600k counts and the low count images 
simulated 60k counts. Looking at Figure 4.8 (on a 256×256 sampling grid), corresponding SSIM 
should be approaching 0.8 for the ground truth and ~0.6 for the low count images. Our enhanced 
images (Figure 5.13) showed SSIM values in this range, with low count images ~0.7 and averages 
between 0.75 and 0.81 depending on the loss function.  

5.3.1 Statistical Analysis 

Overall, all the models evaluated in this work produced similar performance statistics (SSIM, 
PSNR and MSE) with the L1 loss showing small, but statistically significant numerical superiority 
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in the test and validation sets. The statistical analysis using ANOVA allowed for the quantification 
of the impact of different loss configurations on image quality. The statistically significant p-values 
across SSIM, PSNR, and MSE (Table 5.3, Figure 5.14) confirm that the choice of loss function 
affects the quality of generated images. 

It is perhaps, a foregone conclusion that the L1 method had the lowest MSE, since this is precisely 
the definition of the L1 loss function. Furthermore, SSIM and PSNR are inversely related to MSE, 
and it is therefore expected that methods with low MSE will tend to produce high PSNR and SSIM 
(as demonstrated in  Figure 4.8). Consequently, these metrics alone are not sufficient to select the 
preferred image enhancement method. 

5.3.2 Visual Analysis 

Visual inspection of generated images was used in evaluating the efficacy of different loss 
functions applied for the image enhancement algorithm. The visual assessment, as depicted in 
Figure 5.3, revealed insights and limitations of each loss function. 
For L1, the visual similarity to the ground truth images was notable. This is expected since the L1 
focuses on the average magnitude between pixels. However, certain areas in the predicted image 
exhibited brighter pixels, suggesting minor deviations in pixel intensity values. Because the images 
were scaled to the brightest pixel (a common display approach) pixel intensities are dependent on 
the most intense single pixel in the image, which is prone to noise. Despite this, the maintenance 
of the "salt and pepper" effect in the images indicated the preservation of essential textural details, 
a key aspect in scintigraphic imaging. The trends in image similarity metrics (Table 5.2) and the 
L1 (Table 5.1) demonstrate that the model overfit. The model may have learned the noise and detail 
characteristics but did not generalize well to the validation set. However, it did not introduce or 
remove defects in the lungs as a result of overfitting. 
The L1+Perc introduced a checkerboard pattern within the lung regions. Based on the literature 
[140][141][142], the checkerboard pattern arises from using a CNN network such as a U-Net. 
Within the U-Net [58] architecture, the upsampling layers using a deconvolution generate this 
pattern. As future work, one should look to Sugawara et al [140] to prevent the checkerboard 
pattern. Also, the checkerboard pattern was only present in L1+Perc, however, the same U-Net 
generator was used for all for all loss functions. The perceptual loss, driven by content and style 
losses, seemed to emphasize content over style, as indicated by the overfitting of the content loss 
to the training set. This might explain the preservation of general lung structures at the cost of 
introducing subtle artifacts which is associated with the style loss.  

In the case of L1+GAN, the addition of a GAN loss provides adversarial feedback to the generator. 
While L1 loss minimizes pixel-level differences, it falls short in rendering realistic images. In a 
GAN framework, the discriminator's role is to differentiate between real (target) and generated 
(predicted) images. The practice of training the generator twice for each discriminator update plays 
a role in this balance [138]. This approach allows the generator to refine its outputs more 
effectively against the dual criteria of L1 loss and the discriminator. It enables the generator to 
overcome the inherent tendency of L1 loss to produce blurred or averaged results by incorporating 
finer, realistic details encouraged by the discriminator. Furthermore, this training strategy mitigates 
the risk of the discriminator overpowering the generator too early in the training process. An overly 
effective discriminator can prematurely constrain the generator, limiting its ability to capture the 
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complex nuances of scintigraphic images. By training the generator more frequently, we allow it 
to learn and adapt, thus generating a better output. This frequent update of the generator also plays 
a crucial role in preventing mode collapse. It ensures that the generator does not settle on producing 
a narrow set of solutions that might satisfy the L1 loss but lack diversity and realism. Instead, it 
encourages exploration and learning of a wider array of patterns and details, which is essential in 
medical imaging like scintigraphy where accuracy and detail are critical. 

Lastly, the L1+Perc+GAN combination (Figure 5.3) present the most visually appealing results. 
The images closely resemble the ground truth, with no apparent introduction of artifacts or noise. 
Based on the training and validation curves (Figure 5.12), the combined loss function resembles 
that of perceptual loss curve. This may indicate that the perceptual loss is driving the training 
process, and the GAN removes the checkerboard pattern found in perceptual loss. Based on Table 
5.1, the L1 demonstrates a good model was produced between training and validation curves 
(train/val ratio), the perceptual loss shows the model has overfit to the training set, the generator 
demonstrates typical GAN instability, the discriminator has overfit, and the overall function has 
overfit as well. Nevertheless, based on visual assessment and the absence of L1 overfitting we 
selected this model as the superior choice and used it for future clinical evaluation. 

5.3.3 Clinical Significance 

In this study, the L1+Perc+GAN model was chosen based on visual assessment from the validation 
set. The subsequent survey, which was designed to gauge the effectiveness of AI-enhanced images, 
revealed interesting trends in perception among different levels of expertise. Experienced readers, 
those familiar with the nuances of lung scintigraphic images, were as likely to rate AI-enhanced 
images as having low similarity to full-count planars compared to novice readers. The overall 
response from most readers, regardless of their experience level, leaned heavily towards high 
similarity, indicating that critical diagnostic features were preserved in the AI-enhanced images. 

The implementation of pseudo-planar images from simulated low count images has clinical 
implications. Simulated low count images were 10% of the counts in the diagnostic planar imaged, 
which is on the same order as SPECT raw data count level. Hence the count enhancement method 
together with the image resizing methodology of Chapter 4 hold promise for generating high 
quality planar image from raw SPECT projection data. Such a tool is valuable for clinicians who 
have become accustomed to planar lung scintigraphy, especially those who may be hesitant to 
transition fully to SPECT. At The Ottawa Hospital, where the shift from performing both SPECT 
and planar imaging to exclusive SPECT imaging has already occurred, the introduction of pseudo-
planar images is timely and relevant. While not all physicians will require pseudo-planar images 
as a matter of routine, these may be invaluable in cases of suspected patient motion or other 
imaging artifacts that can jeopardize the diagnostic accuracy of the reconstructed SPECT. 
As mentioned, the ability to reduce imaging times or the dosage of radiotracers through AI-
enhanced images addresses key patient concerns, such as discomfort and radiation exposure. 
Alternatively, this technology may be useful to further enhance full-count image data above current 
practice. 
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5.3.4 Limitations 

One significant limitation of this study is the exclusive focus on perfusion images. While perfusion 
scintigraphy is a critical component in diagnosing PE, ventilation imaging also plays an essential 
role. The exclusion of ventilation images means the study's findings may not fully represent the 
complexities involved in comprehensive lung scintigraphy, which typically includes both 
ventilation and perfusion. The method used to simulate low count data has been shown to faithfully 
reproduce low count equivalents, however, further research with diagnostically relevant data 
remains the gold standard.  

Additionally, the study's reliance on a single hospital's data could limit the generalizability of the 
findings. Different hospitals may have variations in imaging equipment, protocols, and patient 
demographics, which could influence the performance of the AI models. Future research should 
aim to include a more diverse dataset, encompassing multiple institutions to enhance the 
robustness and applicability of the models. 
Another limitation is the potential overfitting issue, particularly concerning the use of 
RadImageNet for perceptual loss. While RadImageNet's clinically relevant features offer an 
advantage, there is a risk that models trained on this dataset might not generalize well to other 
medical image datasets or real-world clinical scenarios. 
Lastly, the study's focus on image quality metrics like SSIM, PSNR, and MSE while important, 
does not encompass any aspect of clinical usefulness. While we sought visual assessment by a 
panel of viewers, it is evident that experience plays an important role in evaluating the clinical 
accuracy of the enhanced images. Future studies should include a comprehensive assessment of 
diagnostic accuracy by having a panel of nuclear medicine physicians blindly assess AI enhanced 
images and state-of-the-art clinical images, to ensure they arrive at equivalent clinical 
interpretations. 

5.4 Conclusion 

In conclusion, this chapter demonstrates the development, implementation, and evaluation of a 
model capable of enhancing low-count images to match the diagnostic quality of high-count planar 
images. By visual assessment, the combined L1, perceptual, and GAN loss model performed the 
best. 
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Chapter 6: Conclusion and Future Work 

6.1 Summary of Findings 

This thesis examined count enhancement of lung scintigraphic images using artificial intelligence. 
The research encompassed three pivotal projects, each contributing to the overarching goal of 
improving V/Q scan image acquisition. The first project, a systematic review, established the 
necessity for renewing research into the use of AI in V/Q scans, identifying multiple possibly 
fruitful avenues (Chapter 3). This exploration into existing literature underscored the potential of 
AI in enhancing the efficiency and accuracy of V/Q scans, setting the stage for subsequent 
empirical investigations. Recognising the need to resize SPECT to planar grid size and vice versa, 
the second project (Chapter 4) focused on establishing accurate image resizing method that 
crucially, preserved the inherent noise characteristics of V/Q scintigraphic images. This resizing 
technique was put into practice for preprocessing images for AI model training and validation in 
the final project. The final project (Chapter 5) involved developing an AI model to enhance low-
count perfusion planar images to resemble a diagnostically relevant full count perfusion planar.  

This model holds promise to generate pseudo-planars from SPECT projection data and to reduce 
the duration of V/Q scans, thus improving the patient experience in nuclear medicine procedures. 
However, this work falls short of fully demonstrating the readiness of this approach for clinical 
application. 

6.2 Recommendations for Future Research 

6.2.1 Clinical Evaluation 

Future research should aim to diversify the dataset by adding data from multiple hospitals. This 
approach will introduce a broader range of images from different patients, thereby enhancing the 
model's robustness, generalizability, and reduce overfitting. Additionally, involving certified 
nuclear medicine clinicians in the evaluation process is crucial. Their assessments can help 
determine whether they can distinguish between real and AI-enhanced images and offer insights 
into the model's real-world efficacy. 

6.2.2 Pseudo-Planars from SPECT Acquisitions 

Subsequent studies should focus on refining the model to enhance image counts by varying 
degrees, not restricted to just 10% of the full-count perfusion planars. Utilizing both SPECT and 
planar data obtained for each patient, future models can effectively use SPECT data as low-count 
images, with corresponding full-count planar images serving as targets. These input-target pairs, 
derived from SPECT data captured on a 128×128 grid and planar images on a 256×256 grid, should 
be processed to ensure they are on a matching grid size. This can be achieved by upsampling and 
downsampling methods demonstrated in Chapter 4: Resizing of Scintigraphic Images. 
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To train and evaluate the use of image enhancement to generate pseudo-planar, a need exists to 
match the best angled projection (input) corresponding to the planar image (ground-truth). This 
can be achieved with a preprocessing step that first centers the center-of-mass (COM) in the images 
to ensure the lungs are centrally positioned in the image frame. Next, the SPECT projections can 
be co-registered with the full-count planar images to select the SPECT projection with the highest 
Pearson correlation as that with the most similar angle. 

More sophisticated approaches to generating pseudo-planars from SPECT may leverage the 
flexibility of machine learning models to account for additional data, such as from multiple SPECT 
projections (from slightly different angles). In doing so they can benefit of more count statistics, 
while compensating for view angles. While this has been attempted using averaging of SPECT 
projections, the results are not ideal due to the inherent motion blur. Machine learning algorithms 
may be able to effectively compensate for this motion. 

6.2.3 Improved Models 

Future studies can also explore alternative loss functions that go beyond spatial domain 
comparisons. One direction is the development of a hybrid loss function that combines traditional 
pixel-wise methods (such as L1 loss) with a frequency amplitude loss, derived from a 2D Fourier 
transform. This approach is expected to preserve high-frequency details and provide shift 
invariance. The hybrid loss function, integrating spatial accuracy through L1 loss and texture 
preservation via frequency amplitude loss, is particularly advantageous for scintigraphic images. 
This loss function is sensitive to blurriness while being robust against mild noise, a balance that is 
vital in medical imaging where maintaining high-frequency details and textures is essential, 
especially in cases involving a transformation from low-count to full-count images where noise 
can be a noticeable factor. 

6.3 Final Thoughts 

This thesis represents a step in the ongoing journey to integrate artificial intelligence into the realm 
of nuclear medicine, specifically focusing on the enhancement of lung scintigraphic images. By 
focusing on the enhancement of low-count perfusion planar images, there is potential to further 
refine the model and integrate it into clinical settings. It can help augment the physician workflow, 
enhance diagnostic accuracy which in turn contributes to better patient outcomes.  
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